
Universidade de Aveiro
2023

Pedro
Amaral

Reconhecimento de Configurações da Mão Humana
para Previsão de Intenções em Tarefas Colaborativas

Recognition of Human Grasping Patterns for
Intention Prediction in Collaborative Tasks

“Predicting the future isn’t magic, it’s artificial intelligence.”

— Dave Waters

Universidade de Aveiro
2023

Pedro
Amaral

Reconhecimento de Configurações da Mão Humana
para Previsão de Intenções em Tarefas Colaborativas

Recognition of Human Grasping Patterns for
Intention Prediction in Collaborative Tasks

Universidade de Aveiro
2023

Pedro
Amaral

Reconhecimento de Configurações da Mão Humana
para Previsão de Intenções em Tarefas Colaborativas

Recognition of Human Grasping Patterns for
Intention Prediction in Collaborative Tasks

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Mestre em Robótica e Sistemas Inteligentes,
realizada sob a orientação científica do Doutor Filipe Silva, Professor Auxiliar do
Departamento de Eletrónica, Telecomunicações e Informática da Universidade de
Aveiro, e do Doutor Vítor Santos, Professor Associado c/ Agregação do Departa-
mento de Engenharia Mecânica da Universidade de Aveiro.

The present study was developed in the scope of the Project Augmented
Humanity [POCI-01-0247-FEDER-046103], financed by Portugal 2020, un-
der the Competitiveness and Internationalization Operational Program, the
Lisbon Regional Operational Program, and by the European Regional De-
velopment Fund

o júri / the jury
presidente / president Prof. Doutor José Nuno Panelas Nunes Lau

Professor Associado da Universidade de Aveiro

vogais / examiners committee Prof. Doutor João Paulo Morais Ferreira
Professor Coordenador do Instituto Superior de Engenharia de Coimbra

Prof. Doutor Filipe Miguel Teixeira Pereira da Silva
Professor Auxiliar da Universidade de Aveiro

agradecimentos /
acknowledgements

Quero deixar um agradecimento especial ao meu orientador Filipe Silva e co-
orientador Vítor Santos por toda a dedicação e ajuda durante o desenvolvimento
desta dissertação. Quero também agradecer ao projeto Augmented Humanity por
proporcionar todos os materiais necessários para a realização deste trabalho, aos
meus companheiros de laboratório Joel Baptista e Manuel Gomes pela ajuda na
recolha do dataset e Afonso Castro pela implementação do sistema de comunicação
com o robô. Por fim, quero agradecer à minha família e amigos que me apoiaram
durante todo este percurso.

Palavras Chave Colaboração Humano-Robô, Aprendizagem Automática, Reconhecimento de
Objetos, Antecipação de Ações, Modelo Preditivo, Controlador de Robô, Robô
Colaborativo

Resumo A Colaboração Homem-Robô surge como um conceito que complementa a
flexibilidade e precisão de um trabalhador humano com a força e o menor custo
de um trabalhador robótico no mesmo espaço de trabalho. Avanços recentes no
campo da robótica colaborativa visam dotar os robôs industriais de capacidades de
previsão e antecipação. Em muitas tarefas compartilhadas, a capacidade do robô de
perceber e reconhecer com precisão os objetos que estão sendo manipulados pelo
operador humano é crucial para fazer previsões sobre as intenções do operador.
Neste contexto, esta dissertação tem dois objetivos principais. Em primeiro lugar,
o objetivo é estabelecer a infraestrutura de hardware e software de um sistema
colaborativo, que inclui um robô e duas câmeras utilizando o framework ROS. Esta
infraestrutura inclui também um controlador de robô que antecipa o trabalhador
humano, tomando decisões considerando as suas intenções derivadas dos dados
dos sensores. Em segundo lugar, é desenvolvida uma framework baseada em
aprendizagem para permitir que um robô auxiliar reconheça o objeto agarrado
pelo operador humano com base no padrão das articulações da mão e dos dedos.
A framework combina os pontos fortes do software MediaPipe na detecção de
pontos de referência nas mãos a partir de uma imagem RGB com um classificador
multiclasse profundo que prevê o objeto manipulado a partir dos pontos-chave
extraídos. Este estudo concentra-se na comparação entre duas arquiteturas de
aprendizagem profundas, uma Rede Neuronal Convolucional e um Transformer,
em termos de exatidão de previsão, precisão, recall e F1-Score. O desempenho
do sistema de reconhecimento é testado em diferentes conjuntos de dados com
diferentes utilizadores e em diferentes sessões. Os resultados demonstram a eficácia
dos métodos propostos, ao mesmo tempo que fornecem informações valiosas sobre
os fatores que limitam a capacidade de generalização dos modelos.

Keywords Human-Robot Collaboration, Machine Learning, Object Recognition, Action
Anticipation, Predictive Model, Robot Controller, Collaborative Robot

Abstract Human-Robot Collaboration emerges as a concept that complements the flexibility
and precision of a human worker with the strength and lower cost of a robotic
worker in the same workspace. Recent advances in the field of collaborative
robotics aim to endow industrial robots with prediction and anticipation abilities.
In many shared tasks, the robot’s ability to accurately perceive and recognize the
objects being manipulated by the human operator is crucial to make predictions
about the operator’s intentions. In this context, this dissertation has two main
objectives. Firstly, the aim is to establish the hardware and software infrastructure
of a collaborative system, which includes a robot and two cameras using the ROS
framework. This infrastructure also includes a robot controller that anticipates the
human worker, by making its decisions considering his intentions derived from
sensor data. Secondly, a learning-based framework is developed to enable an
assistive robot to recognize the object grasped by the human operator based on
the pattern of the hand and finger joints. The framework combines the strengths
of the commonly available software MediaPipe in detecting hand landmarks in an
RGB image with a deep multi-class classifier that predicts the manipulated object
from the extracted keypoints. This study focuses on the comparison between two
deep architectures, a Convolutional Neural Network and a Transformer, in terms
of prediction accuracy, precision, recall, and F1-score. The performance of the
recognition system is tested on different datasets with different users and in different
sessions. The results demonstrate the effectiveness of the proposed methods while
providing valuable insights into the factors that limit the generalization ability of
models.

Contents

Contents i

List of Figures iii

List of Tables v

Acronyms vii

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 2

1.3 Objectives . 4

1.4 Document Structure . 5

2 State of the Art 7

2.1 Collaborative Robotics . 7

2.1.1 Human-Robot Communication . 7

2.1.2 Safety . 9

2.2 Anticipation System . 10

2.2.1 Concepts . 10

2.2.2 Approaches . 12

2.3 Object Recognition . 16

2.3.1 Object Sensing . 16

2.3.2 Hand Sensing . 17

3 Human-Robot Collaboration System 21

3.1 System Architecture . 21

3.1.1 Robot Operating System (ROS) . 22

3.1.2 Perception System . 23

3.1.3 Manipulator Arm Control . 23

3.1.4 Computational Systems . 24

i

3.2 Software Tools and Deep Architectures . 25

3.2.1 Keypoints Detection Frameworks . 25

3.2.2 Convolutional Neural Networks (CNNs) . 27

3.2.3 Transformer Neural Networks . 28

3.3 Integration of First Anticipation Experiments . 29

3.3.1 Assembly Task: Build a Striped Flag . 29

3.3.2 First Anticipation Experiments . 32

3.4 Final Remarks . 33

4 Learning-Based Recognition of Human-Grasped Objects 35

4.1 Proposal Framework . 35

4.1.1 Approach . 35

4.1.2 Evaluation Metrics . 37

4.2 Data Representation . 38

4.2.1 MediaPipe Suitability Validation . 39

4.2.2 Dataset Acquisition . 40

4.2.3 Preprocessing . 41

4.2.4 Train-Validation-Test Split . 43

4.3 K-Means Clustering . 43

4.4 Convolutional Neural Network Classifier . 44

4.4.1 Model Selection . 44

4.4.2 Performance Evaluation . 45

4.5 Transformer Neural Network Classifier . 47

4.5.1 Model Selection . 47

4.5.2 Performance Evaluation . 48

4.6 Comparative Analysis of Deep Models Generalization Ability 50

4.6.1 Experiments and Metrics . 50

4.6.2 Session-Based Testing . 50

4.6.3 User-Specific Test . 52

4.6.4 Leave-One-User-Out Test . 55

4.7 Human Intention Prediction in Shared Tasks . 56

4.8 Final Remarks . 57

5 Conclusion and Future Work 59

5.1 Discussion . 59

5.2 Future Work . 60

5.3 Contributions . 60

References 61

ii

List of Figures

1.1 Illustration of a robot-assisted assembly system in a collaborative cell. 4

2.1 Common data sources in Human-Robot Collaboration. 8

2.2 The four collaborative operative modes identified by robot safety standards ISO modes

10218-1/2. 10

2.3 Functional blocks of an anticipatory robotic system considering two alternative approaches:

modules developed separately vs end-to-end learning. 11

2.4 Action Anticipation using Supervised Learning diagram. 13

3.1 Prototype collaborative cell LARCC. 22

3.2 Orbbec Astra Pro. 23

3.3 UR10e Collaborative Robot and Robotiq 2F-140 Gripper. 24

3.4 OpenPose Examples. 25

3.5 OpenPifPaf Example. 26

3.6 Mediapipe landmarker models: Hand Landmarker and Pose Landmarker. 26

3.7 CNN Architecture. 27

3.8 Transformer Architecture. 29

3.9 Flag examples. 30

3.10 Work environment: red - small block hovering area, blue - robot workspace with the

remaining blocks, green - flag assembling area, yellow - user area. 30

3.11 General ROS architecture with decision-making node. 31

3.12 State machine diagram. 32

4.1 The proposed learning-based framework for object recognition based on the hand keypoints. 36

4.2 Confusion matrices examples: non-normalized and normalized. 38

4.3 The objects used in the study include a water bottle, a Rubik’s cube, a smartphone, and a

screwdriver. 38

4.4 Dataset examples holding a bottle (left) and a phone (right). 41

4.5 Points detected on the pictures in Figure 4.4 by Mediapipe Hands Model. 42

4.6 Points from the pictures in Figure 4.5 after normalization. 43

iii

4.7 The distribution of test dataset samples from each class within each cluster. 44

4.8 CNN model architecture. 45

4.9 Training and validation loss evolution during the CNN’s training. 46

4.10 Training and validation accuracy evolution during the CNN’s training. 46

4.11 CNN confusion matrix. 47

4.12 Transformer encoder block. 48

4.13 Transformer model architecture. 48

4.14 Training and validation loss evolution during the Transformer’s training. 49

4.15 Training and validation accuracy evolution during the Transformer’s training. 49

4.16 Transformer confusion matrix. 49

4.17 Multi-User Confusion matrices . 51

4.18 "Session-Based Testing" confusion matrices (CNN model): session 1 (a) to session 4 (d). . 52

4.19 "Full User Dataset" confusion matrices (CNN model): (a) User1, (b) User2, and (c) User3. 53

4.20 "Session-Based User1 Testing" confusion matrices (CNN model). 54

4.21 "Leave-One-User-Out Test" confusion matrices (CNN model). 56

4.22 ROS nodes in the object recognition pipeline. 56

iv

List of Tables

4.1 Percentage of frames with detected right-hand keypoints 39

4.2 Longest sequence of empty frames . 40

4.3 MediaPipe hand and pose model concordance percentage in different scenarios 40

4.4 Number of samples in the dataset per class and user . 41

4.5 Tested hyperparameter values (CNN model) . 45

4.6 Best hyperparameters (CNN model) . 45

4.7 CNN metrics . 46

4.8 Tested hyperparameter values (Transformer model) . 47

4.9 Best hyperparameters (Transformer model) . 48

4.10 Transformer metrics . 48

4.11 "Full Dataset" performance metrics . 51

4.12 "Session-Based Testing" performance metrics where data from each session only appears

in one set. For example, the "Session 1" column means that data from that session of all

users is used in testing, while the remaining sessions are used for training. 52

4.13 "Full User Dataset" performance metrics. 53

4.14 "Session-Based User1 Testing" performance metrics (each column indicates the specific

session used in testing the model). 54

4.15 "Leave-One-User-Out Test" performance metrics where data from each user only appears

in the test set. For example, the "User1" column means that data from that user is used in

testing, while the data from the remaining users is used for training." 55

4.16 Average training times comparison . 58

v

Acronyms

AI Artificial Intelligence
CNN Convolutional Neural Network
EMG Electromyography
HCI Human-Computer Interaction
HOI Hand-Object Interaction
HRC Human-Robot Collaboration
HRI Human-Robot Interaction
LSTM Long Short-Term Memory
ML Machine Learning
MLP Multi-Layer Perceptron
OMPL Open Motion Planning Library
RNN Recurrent Neural Network
ROS Robot Operating System
SVM Support Vector Machine

vii

CHAPTER 1
Introduction

1.1 Background

The Third Industrial Revolution was characterized by a focus on automating repetitive and
heavy tasks on the assembly lines. Still, this created a problem: whenever the manufacturers
needed the robots to work in a different assembly process, they needed to be reprogrammed by
an expert. The Fourth Industrial Revolution, also known as Industry 4.0, refers to the current
trend of the manufacturing sector to become more intelligent and achieve greater automation.
This trend takes advantage of the recent developments in artificial intelligence, the Internet of
Things, and autonomous robots to pave the way for more efficient and flexible production
processes. With Industry 4.0, robots are expected to be more adaptable and perform more
actions without constant explicit programming.

The concept of Human-Robot Collaboration (HRC) emerges as part of Industry 4.0 and
involves the research of mechanisms that allow humans and robots to work together to achieve
a shared goal. Some of the most relevant topics in recent research include collision avoidance
and human-aware planning of robot motions. However, to achieve true collaboration, it is not
enough to react to the partner’s movements and intentions, the robot must anticipate them.

Artificial Intelligence (AI) has significantly evolved in the last few years. With the increase
of computational power, machine learning (ML), a subset of AI, has become an increasingly
promising method to deal with complex data like images and text, heavily contributing to
areas such as visual perception and speech recognition. The ability of ML models to learn
from data with minimal human intervention and understand new data it has never seen before
makes it a prime candidate to solve many problems in robotics and HRC in particular.

Anticipation is a research topic in many areas, such as biology, brain studies, psychology,
social sciences, artificial intelligence, and engineering. One of the most cited definitions in the
last decades and across the various fields is Rosen’s [1]:

An anticipatory system is a system containing a predictive model of itself and/or
its environment, which allows it to change state at an instant in accord with the
model’s predictions pertaining to a later instant.

1

In the field of biology, Louie [2] claims that «Much, if not most, biological behavior
is model-based ...» with the referred models being the «... internal predictive models of
themselves and their environments ...». Poli [3] further claims that «... given that anticipatory
behavior dramatically enhances the chances of survival, evolution itself may have found how
to give anticipatory capacities to organisms, or to at least some of them.». For example, an
animal predicts that it will be attacked by its predator and dodges said attack to survive.

In the case of humans, Louie [2] also stated, «We typically decide what to do now in terms
of what we perceive will be the consequences of our action at some later time.» alluding to
our anticipatory behavior. Therefore, human actions can result from reactive behavior when
they are based on the past, from anticipatory behavior when they are based on predictions of
the future, or from a mix of both.

1.2 Motivation

Human-Robot Collaboration is a research topic becoming increasingly important in
modern industry, driven by the need to enhance productivity, efficiency, and safety in work
environments [4]–[9]. The combination of human skills and robotic capabilities provides
significant potential to improve the execution of complex and repetitive tasks. However,
effective synchronization of actions and seamless communication between partners are open
challenges that need to be further addressed [10]–[12]. In recent years, there has been a
remarkable trend toward endowing collaborative robots with cognitive abilities, transforming
them from simple automated machines into intelligent and adaptable collaborators. This shift
is driven by the increasing demand for robots that can work alongside humans, understand their
intentions, and actively contribute to complex tasks in dynamic environments. Collaborative
cognition encompasses a range of essential abilities to enable robots to learn, predict, and
anticipate human actions [9], [13], [14].

In collaborative scenarios, assistive robots are designed to work alongside humans in
assembly processes or maintenance operations, providing timely support to enhance the overall
efficiency of the task. Robots can assist the human worker by delivering a component, tool,
or part, by holding a part while the operator works on it, or by performing autonomously a
specific sub-task. In any case, the ability of an assistive robot to anticipate the upcoming needs
of a human operator plays a pivotal role in supporting efficient teamwork. By anticipating
human intentions, actions, and needs, robots can proactively assist or complement human
tasks, providing timely support and improving overall efficiency.

The concept of intention anticipation is related to a double ability of robotic systems [15]–
[18]. First, the ability to predict an action even before it occurs (or, before it is fully executed),
by using the partial information provided up to a certain moment in time. The second ability
consists of using this information to proactively plan their actions and adjust their behavior
in real-time, providing smoother collaboration and minimizing potential conflicts or delays.
However, achieving cognitive capabilities poses significant challenges, such as the need for
robust real-time perception systems, efficient learning algorithms, and context understanding.

2

This anticipation ability can be achieved through distinct approaches, such as recognizing
subtle cues, observing the progress of the task, or predicting human-object interactions [16],
[19]–[21]. Different cues can contribute to the legibility of human actions according to the
activity being performed. For example, eye gaze, head orientation, changes in body language,
facial expressions, and even voice tone may be used to discriminate the operator’s emotional
state, level of engagement, and potential intentions. The source of anticipatory information
may also result from monitoring the progress of the ongoing task and assessing the completion
status of various sub-tasks. Therefore, the robot can anticipate the future by observing the
sub-tasks performed in the past and reasoning about the future based on the structure of the
complete task. Along the same line, the robot can predict the likely sequence of actions the
operator is about to take by analyzing patterns of behavior and decision-making, enabling it
to adjust its own actions.

This dissertation aims at the development of an anticipatory system to enhance human-
robot collaboration in industrial settings under the AUGMANITY mobilizing project1. It
is inspired by a collaborative scenario in which the robot observes the actions of the human
operator, makes predictions about the human’s intention, and reacts accordingly by either
waiting for more observations or executing a physical action. This work focuses on the robot’s
ability to accurately perceive and recognize the object being manipulated by the human
operator as a key element in making predictions about its needs. Knowing the object in the
user’s hand provides valuable contextual information revealing both current activity and future
intention. However, this method comes with a limitation, while being handled, occlusions and
partial views may compromise the actual perception. Another major challenge is the lack of
labeled training data, as well as the time and costs of generating them.

The proposed concept is generic and it can be used in many human-robot interaction (HRI)
scenarios. The robot can use this information to adjust its posture accordingly and/or to
provide relevant assistance. For example, suppose a robot is collaborating with a worker on a
factory assembly line. The robot observes the worker’s action and realizes he/she just picked
up a specific object. Based on object recognition, the robot can adjust its own position or
prepare the required tool to assist the worker in the assembly process. In this way, the robot
anticipates the human’s action and streamlines the workflow. This example illustrates how
anticipation can be applied in HRC scenarios to enhance interaction and overall efficiency: the
robot understands the user’s needs by recognizing the object being grasped or manipulated
(Figure 1.1).

1AUGMANITY website: https://www.augmanity.pt

3

https://www.augmanity.pt

Vision System

Shared workspace

Operator workspace
Robot workspace

OperatorRobot

Figure 1.1: Illustration of a robot-assisted assembly system in a
collaborative cell (adapted from [22]).

1.3 Objectives

This dissertation addresses the importance of anticipation in collaborative robotic tasks,
exploring its challenges and practical applications in industry settings. The focus is on a
framework that is able to derive the user’s intention from sensor data by recognizing the
grasped object. In summary, the main objectives are the following:

1. Review important concepts in HRC and, in this context, study the current research
direction of action anticipation including common machine learning methods and how
they impact the behavior of the robot. Additionally, look into the state of the art
methods related to object recognition.

2. Establish the hardware and software tools used in this dissertation. Develop an infras-
tructure in ROS to support a practical implementation of action anticipation in the
context of HRC with a robot controller that considers the human partner’s intentions
to make appropriate decisions during the execution of a sequential assembly task.

3. Explore and apply the potentialities of the MediaPipe framework. Produce deep learning
models capable of perceiving and recognizing the objects being grasped by the user by
using the right-hand keypoints. Perform extensive experiments, comparing the different
models developed, to demonstrate the potential and limitations of the proposed approach
analyzing, in particular, the generalization performance and/or model failure across
different trials for the same user and across multiple users.

4

1.4 Document Structure

The remainder of the document is organized into four chapters. Chapter 2 provides
an overview of the existing literature and research about collaborative robotics, action
anticipation, and object recognition, contextualizing the work within the current state of
the art. Chapter 3 reviews tools used for this study and describes the initial more simple
implementation of an anticipatory robot controller. Chapter 4 presents the core components
of the proposed approach, including the data acquisition process, the preprocessing steps
applied to the collected data, and details of the neural network architectures implemented as
multi-class classifiers and then discusses the results obtained from the experiments carried out,
shedding light on the potential and limitations of the proposed approach for object recognition.
Chapter 5 concludes the document by outlining the main conclusions of the study and it
highlights potential avenues for future research.

5

CHAPTER 2
State of the Art

This chapter looks into previous work on collaborative robotics, action anticipation, and
object recognition. Section 2.1 covers the background concepts associated with collaborative
robotics including communication methods and safety. Section 2.2 explains the necessary
fundamentals about action anticipation and provides some approaches from the current
research direction in this theme. Section 2.3 explores the methods commonly used in object
recognition.

2.1 Collaborative Robotics

Human-Robot Collaboration (HRC) consists of robots and humans working in the same
workspace towards a common goal. Classical industrial robots are usually automated to
perform repetitive tasks that require high physical strength. On the other hand, tasks that
require cognitive knowledge, flexibility, and precision are better suited for humans, even if they
are physically weaker. HRC aims to take advantage of both of their strengths and complement
each others’ weaknesses to increase manufacturing efficiency.

In a HRC scenario, robots need to be different from the traditional ones, given that they
will work in the same workspace as humans. According to Castro et al. [9], «Collaborative
robots need to be endowed with a set of abilities that enable them to act in close contact with
humans, such as sensing, reasoning, and learning. In turn, the human must be placed at the
center of a careful design where safety aspects and intuitive physical interaction need to be
addressed as well.». In [23], it is stated that nowadays, collaborative robots are developed to
be compact, easy to install and program, flexible, mobile, consistent, and precise. Additionally,
they positively impact employees since they are responsible for monotonous and dangerous
actions and reduce the production cost for the company.

2.1.1 Human-Robot Communication

Humans and robots can communicate through several methods, which can be direct such
as using a console or a remote, or indirect, resulting from data captured from sensors. Based

7

on [9], [24], [25], the main methods for indirect communication can be seen in the diagram in
Figure 2.1 and can be described as follows:

HUMAN ROBOT
COMMUNI-

CATION

GAZE

Derived
from

human
pose

Eye-
tracking
Wearable

Device

SEMANTICS Human
Poses

Object
Positions

VOICE
COM-

MANDS

GESTURES

Markerless
Vision

Vision
based
with

Markers
Depth
Images

Inertial
Data

Point
clouds

BIO-
METRICS

Muscular
Activity

Brain
Activity EMOTIONS

Figure 2.1: Common data sources in Human-Robot Collaboration.

• Gestures: these are one of the main ways humans communicate, whether through
simple movements or formal sign language. In the literature about HRC, gestures
can also commonly be found since they have the advantage of resisting ambient noise.
Usually, gestures are captured with vision-based methods with either an RGB or RGB-D
camera, so there is no need for unnatural movements. With vision, it is possible to
include markers, but these may lead to occlusions and hinder the worker’s movements.
Consequently, there is also work in the literature that uses markerless vision to allow
more unrestricted movements. Another way to capture the movements of the human
worker would be to use wearable inertial sensors, which contain accelerometers and
gyroscopes, but, once again, wearables can hinder the worker’s movements. Finally,
capturing point clouds using a LIDAR presents another possibility of capturing gestures
without restricting the worker’s motion.

• Voice Commands: talking is the most intuitive way for humans to communicate with
each other. The advances in voice recognition and natural language processing make
this a possible communication solution with robots. However, despite being intuitive,
simple, effective, and even robust against lighting variations, when it comes to an
industrial setting that contains significant sound noise, it becomes less valuable than
the alternatives.

• Semantics: semantic information about the objects can also help the global workflow.
For example, suppose the robot is trained to recognize certain features in objects related

8

to how it can pick them up. In this case, the robot can pick up a new object it has
never seen before if it has a similar structure. Human actions can also be represented
semantically by obtaining the poses of the human as a specific set of limbs, even if only
partially. During action recognition, this can be used to know which objects the worker
can interact with. Having semantic information about the pose of the human body also
helps in the path-planning phase of the robot since it can use this information to avoid
the worker and prevent collisions.

• Gaze: this can be used to determine where the user’s attention resides, giving a
considerable amount of information that can trigger some action. There are two options
to obtain the user’s gaze. Wearable sensors can provide better results but are expensive
and intrusive. On the other hand, algorithms that detect head pose and assume the
gaze from it can also be used, which is a cheaper and non-intrusive solution.

• Emotions: although this is a relatively new idea, some applications analyze the user’s
emotions from his facial expressions to have even more information in the algorithms.

• Biometrics: electromyography (EMG) sensors can measure electrical signals generated
by muscle contractions, while electroencephalography (EEG) signals are commonly used
in brain-computer interfaces (BCIs).

2.1.2 Safety

Safety is one of the most critical topics in collaborative robotics and the first step toward
establishing a collaborative environment. According to [23], collaborative robots are able
to safely work with people because they have sensitive sensors that can detect the human
interrupting them, causing them to stop their actions, while traditional robots would potentially
injure the worker. However, given that there are tasks that require the robot to move very
close to the worker, some norms were implemented: ISO 10218-1 and 10218-2. From these
two standards, Castro et al. [9] and Villani et al. [5] describe the four criteria (Figure 2.2)
from which at least one must be met:

1. Safety-rated monitored stop: when a human enters the cobot’s workspace, it
completely stops.

2. Hand guiding: when an operator manually moves the cobot, it is compliant.
3. Speed and separation monitoring: as the human moves closer to the cobot, it

becomes gradually slower.
4. Power and force limiting: the cobot has its operation restricted in terms of force

and torque.

9

Figure 2.2: The four collaborative operative modes identified by robot safety
standards ISO modes 10218-1/2 [5].

2.2 Anticipation System

2.2.1 Concepts

The concept of anticipation has been studied in several research fields and, in general,
anticipation is viewed as the impact of predictions on the current behavior of a system,
be it natural or artificial. A prediction model provides information about the possible
future state of the environment and/or system. This perspective of looking to the future is
related to the purpose of incorporating that information into a decision-making or planning
process. Accordingly, the system becomes anticipatory when it incorporates such a model
and, simultaneously, when it uses the model to change its current behavior.

Over the last few decades, experimental evidence of the existence of anticipatory biological
processes at different levels of organization has been reported [3], [26]. The ability to modify
behavior in anticipation of future events offers an adaptive advantage to living organisms with
an impact on behavioral execution and learning. Anticipation is also considered one of the
required abilities of cognitive robots operating in dynamically changing environments. The
role of anticipation is to connect the robot’s action in the present to its final goal, helping the
design of robots with an increased level of autonomy and robustness.

The fundamental aspects of anticipation lie at the intersection of concepts such as time
and information, involving abilities such as perception and prediction. The above definition
of anticipation contains a temporal element that provides a key division between anticipatory
and non-anticipatory robots. Anticipatory robots make decisions based on current states and
predicted future states using predictive models of the environment. At the other extreme of

10

the spectrum are the robots that live in the present based on the current state of the observed
environment, which are usually called reactive robots (e.g., the Braintenberg’s vehicles [27]).
However, the behavior of a purely reactive robot is limited by its temporal horizon since
they have no memory of the past to build a model of the world. Most of the current robots
present a behavior influenced either by the current perception as well as by the memory of
past perceptions but still lacking a perspective of the future.

Information provides another defining aspect of anticipation since the prediction of a future
state depends on sensory data. The challenge arises from the moment that an anticipatory
system operates based on a potential future state (even before it occurs) that can only be
inferred from past and current information. The inherent uncertainty associated with the
prediction process can be reduced through the acquisition of information, namely by using
different sensory modalities. In this context, sensory fusion is a process often adopted to
merge data from multiple sensors such that to reduce the amount of uncertainty that may be
involved to produce more reliable knowledge about the future.

The nature of anticipation and the mechanisms that support it are considered open
questions in AI and robotics. Current research addresses fundamental questions such as:
in which situations is anticipation useful? How can anticipatory processes be modeled and
implemented in robotic systems? What are the impacts that may result from an anticipatory
behavior? In the context of this dissertation proposal, anticipation is considered a combination
of prediction and decision-making, as illustrated by the blocks diagram in Figure 2.3. The
prediction model offers the possibility of incorporating action selection in their planning
through a decision-making block, while the planning module relates to the robot’s actions.
These modules can be developed separately, or an end-to-end learning technique could be
used where the model learns the different parts from the perception to the feedback control.

Anticipatory layer

Perception Prediction
model

Decision
making

Motion
Planning

Feedback
Control

Perception End-to-end learning Feedback
Control

Sensor
input

Control
output

Figure 2.3: Functional blocks of an anticipatory robotic system considering two alternative
approaches: modules developed separately vs end-to-end learning.

There are different situations in which an anticipatory response seems to be an essential
ability for effective robot behavior. In an attempt to distinguish different types of anticipatory
behaviors, three contexts in which a robot can operate are categorized below and the respective
task requirements are presented as follows:

• Time synchronization: the interception of moving objects is central to several
benchmark robotic tasks such as ball-catching and playing table tennis [28], [29]. These

11

tasks are challenging due to the demanding spatial–temporal constraints, which require
continuous coordination between visual, planning, and control systems. On the one
hand, frequent repredictions of the target location are required as new observations
become available. On the other hand, this progressive refinement imposes an online
re-planning of robot motion such that the goal is achieved in time.

• Preventive safety: systems that manage risk require some form of anticipatory
mechanism such that the robot can adapt its behavior when an undesired situation
occurs. Autonomous driving is an example of how predicting future events and reacting
properly are important abilities to mitigate risk. Modeling behavior and predicting the
future intentions of pedestrians are core elements to ensure that the driver stops the car
safely or avoids the pedestrian in time.

• Coordinate joint activities in human-robot interaction (HRI): humans have
the ability to coordinate their actions when carrying out joint tasks with other partners
[15], [30]. In the same line of thought, anticipation can enhance the ability of a robot
to interact with a human partner by predicting their actions (or intentions) before
selecting its own action plan. In collaborative contexts such as those that occur during
manufacturing or assembly tasks, the main challenge is combining anticipation and
planning in a context of high uncertainty due to the variability of human behavior in
complex industrial environments. Anticipation seems to have a significant potential for
more fluid and natural interaction with an impact on safety and cycle time.

2.2.2 Approaches

The ability of robots to accurately predict and anticipate human actions and intentions can
greatly improve their ability to work safely and efficiently with humans in a shared workspace.
Human intention recognition involves using sensors and machine learning algorithms to predict
a human’s intended action or task based on their movements, posture, and other contextual
cues.

Regarding the sensors used to capture the raw data, most literature suggests using a RGB
camera. However, the captured images may be used in the following different ways:

• directly used as input to models which can extract features from the images;
• used as input to frameworks that receive an image, process it, and return the keypoints,

such as the skeleton joints of the person in the image; these keypoints can also then be
used to assume the gaze of the human in the image such as in Canuto et al. [31] where
the authors used OpenPose (explored in detail in subsection 3.2.1) to obtain not only
the skeleton joints but also the worker’s gaze;

• used to process the optical flow[32]–[35];
• if the human was wearing markers, the image can be used to obtain the positions of the

markers obtaining gestures from the sequence of those positions [36];
Besides RGB cameras, some works, such as the one described in Moutinho et al. [37],

indicate the use of an RGB-D camera to capture both the color and the depth images, which
contain the gestures and pose of the worker. Other than cameras, in Tortora et al. [38] IMU
and EMG data was used as input to capture the gestures and anticipate the worker’s action.

12

When it comes to obtaining the worker’s gaze, it is possible to do so from the RGB images
as mentioned above, but it is also possible to use wearable sensors to capture it, such as in
Schydlo et al. [39].

After knowing which data is usually captured and provided to an algorithm, the remainder
of this subsection explores possible algorithmic solutions present in previous work starting
with those that are only about predicting the action of the human worker and then those that
go a step further and reference how to go from a prediction to the action that the robot must
execute as a response.

Predictive Modeling Techniques

In the state-of-the-art, anticipation is generally represented as a classification problem
about predicting the next action of the worker, frequently done by using a sequence of
images that must be classified as a particular future action class. Using Figure 2.4 as an
example, the high-five action should be predicted before the frames that contain it are
captured. The previous work with this kind of algorithm mainly includes Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), with the latter being the
most common.

Figure 2.4: Action Anticipation using Supervised Learning diagram [32].

In Furnari and Farinella [35], the authors aimed to predict the subsequent actions that
someone wearing a camera would perform and the objects he would interact with. They
used three datasets containing RBG frames from which they derived the optical flow and
the objects in the environment. This data is then passed on to a Rolling-Unrolling Long
Short-Term Memory (LSTM). The Rolling LSTM (R-LSTM) is a network that continuously
encodes the received observations and keeps an updated summary of the past. When it is
time to make predictions about future actions, the Unrolling LSTM (U-LSTM) is used with
its hidden and cell states equal to the current ones of the R-LSTM.

In Schydlo et al. [39], the authors used an encoder-decoder recurrent neural network
topology to predict human actions and intent where the encoder and the decoder are both
LSTM networks. At each step, the decoder returns a discrete distribution of the possible
actions making this algorithm able to consider multiple action sequences, which are then
subject to a pruning method that reduces them to obtain the right action finally. In their
work, these algorithms were tested in two different datasets, one containing RGB images with
optical markers and gaze information from wearable sensors and another with RGB-D images.

13

In Moutinho et al. [37], the authors aimed to increase the natural collaboration between
the robot and the human in an assembly station by interpreting implicit communication cues.
The data related to the environment was captured using an RGB-D camera. This data was
then passed on to a ResNet-34, a pre-trained neural network that extracted the features
from the images. These features are used as the input to a LSTM to perform human action
anticipation.

In Gammulle et al. [32], the authors aimed to predict future frames while at the same
time predicting the following action. In their implementation, they used public datasets with
videos from which they obtained RGB images and optical flow streams. To consider both data
sources, they also used two ResNet-50’s, which are pre-trained networks, one to get the input
features from the image and another from the optical flow, and 2 LSTMs to take into account
both sequences of inputs. Then the two results are merged into a final classification. They
also used two Generative Adversarial Networks (GAN) to generate the subsequent frames,
but this is different from the focus of the analysis.

In Wang et al. [40], the authors used video datasets to train a model that would predict a
future action from the observed frames. They used three pre-trained neural networks in their
work: VGG-16, TS, and ConvNet, to extract features from the images. Then these features
were aggregated using a Temporal Transformer Module (TTM), and finally, a Progressive
Prediction Module (PPM) would anticipate the worker’s future action. This article also
addresses the issue of specifying what the algorithm should consider as an action. Although
most of the literature often implies that the last frames captured by the camera are considered
an action, given that those are the frames that contain the last action made by the user, the
authors of this article go into greater detail. They tested and evaluated how many frames
should be considered as the last action to obtain the best results using a metric from Geest et
al. [41] named per-frame calibrated average precision (cAP) calculated with (2.1). In [40] it is
defined with

cAP =
∑

k cPrec(k) × I(k)
P

, (2.1)

«... where calibrated precision cPrec = T P
T P +F P/w , I(k) is an indicator function that is equal

to 1 if the cut-off frame k is a true positive, P denotes the total number of true positives,
and w is the ratio between negative and positive frames. The mean cAP over all classes is
reported for final performance.».

In Rodriguez et al. [34], the authors aimed to predict the next action by first predicting the
following motion images. They used datasets containing videos and then processed them to
obtain motion images. These motion images become the input of a convolutional autoencoder
network that generates the following motion images. These images are then passed to a CNN
that processes them and makes action predictions for the future. The final action prediction is
obtained from the results of the previous network and those of a second CNN, which analyzes
the original RGB images.

In Wu et al. [33], the author’s goal was to predict the following action someone wearing
a camera would perform after some time. Initially, the optical flow was obtained from the
captured images, and both were used as input to the model. The model is comprised of a

14

Temporal Segment Network (TSN), a CNN, and a LSTM to predict the future frame features
and then use them to perform the required classification.

From Prediction to Planning

After predicting the next action of the worker, the robot must execute some action as a
response to complete the anticipation process. This subsubsection contains articles that go
beyond the predictive model and have relevant details for the integration of the model in a
controller.

In Canuto et al. [31], the authors aimed to predict the following action using a LSTM.
In their work, they used a dataset captured with an RGB camera. From these images, they
obtained the objects in the environment, the human skeleton joints extracted over time using
OpenPose, and the gaze derived from the joints. Then the three data sources were given to
the LSTM as input to perform the desired classification. In this process, the authors use an
adaptive threshold on the uncertainty of the recurrent neural network, which makes the model
need a certain level of certainty to classify the action as a particular class. This creates a
more robust solution since a standard supervised learning algorithm would predict the class
with the highest probability even if the model has low certainty about every category.

In Maeda et al. [36], the authors aimed to reduce the delay in the robot’s response by
anticipating the human worker and providing a screw or a plate accordingly. They captured
the environment using an RGB camera and tracked the hand using optical markers. Then
they predicted the following human action using a look-up table containing different orders for
assembly actions. With the nearest neighbor algorithm, the actions of the human would be
matched with a particular order. The limitation of this method is that all possible sequences
need to be on the table because if they are not there, then the robot will match with a different
order which may be undesirable. If the robot eventually notices that it did the wrong action, it
would then follow a hard-coded contingency trajectory to return to the pre-grasping position.
When performing a handover action, the previously captured data is used to generate possible
trajectories and this is given to the feedback controller as a reference.

In Zhang et al. [42], the authors aimed to predict the intention of the human worker to
provide him with the required piece. To achieve this, they used an RGB camera to capture
the data from the environment. Then the images are given to a convLSTM framework where
the CNN part is in charge of extracting features from the input images, and these features
are then passed on to the LSTM to predict the intention. This article also tackles the issue
of having several possible assembly orders. It solves it by creating a phase at the beginning
of the collaboration in which the robot learns the assembly actions and their order from a
demonstration. After the prediction of the intention of the worker, the robot proceeds to fetch
the required piece. It uses a CNN to recognize said piece and ROS Open Motion Planning
Library (OMPL) to handle the trajectory planning jobs. In terms of safety, the authors
defined speed limits for the robot and ensured that the robot would avoid the workspace of
the human. Then when it needs to move closer to the user, its speed is reduced to guarantee
the user’s safety.

15

In Huang and Mutlu [17], the authors’ goal is to make the robot use the anticipated
actions of the worker to decide its tasks. It monitors the worker’s gaze using a wearable device
and uses it to predict his intent using a Support Vector Machine (SVM). After predicting it,
the robot uses an anticipatory motion planner named «MoveIt!» to plan its motion according
to a certain confidence threshold. This means that while it is unsure of what the human
wants, the robot starts to move toward the item it thinks the user wants but only really moves
completely when it surpasses the threshold.

2.3 Object Recognition

The idea underlying this study is to explore the possibility of establishing a relationship
between the object grasped by the human operator and his current needs in collaborative
scenarios. The immediate conceptual roots can be traced to the Activity Theory [43] whose
main concept is "activity" defined as a purposeful and developing interaction between actors
("subjects") and the world ("objects"). This framework has established itself as a key concept
for research in human-computer interaction (HCI) and interaction design.

This section provides an overview of existing literature and research relevant to this study.
In particular, the recognition of the object grasped by the user is the central block when it
comes to achieving the main purpose. It is organized into two subsections – "object sensing"
and "hand sensing" – to help categorize and differentiate methods that primarily focus on
capturing and analyzing data related to the object itself from those that explicitly use data
from the human hand to infer the object being grasped.

2.3.1 Object Sensing

Approaches within the "object sensing" category leverage visual information extracted from
images or videos of the objects the user is interacting with, by using techniques from computer
vision and machine learning to discern object identities based on their visual attributes.
A common approach involves the extraction of visual features that can encompass color
histograms, texture descriptors, contour shapes, and local key-points. Early works in this
domain [44]–[46] applied traditional image processing techniques to extract features such as
shape moments and color histograms, leading to initial success in recognizing simple objects.
The surge of progress seen in recent years is largely due to the latest developments in deep
learning [47], particularly CNNs, and geometric reasoning [48].

Deep learning has had an enormous impact on perception tasks with the design of effective
architectures for real-time object recognition, providing significant advancements in accuracy
and robustness. CNNs have demonstrated remarkable performance in extracting hierarchical
features from images [49]. Transfer learning, where pre-trained models are fine-tuned for
specific tasks, has enabled efficient object recognition even with limited training data [50].
A relevant vision-based approach is the one in which the process of recognizing the human-
grasped object, across consecutive frames, comprises two sub-processes: hand tracking and
object recognition. The hand detection and tracking system is commonly used for defining a
bounding box around the grasped object that describes its spatial location. This initial step

16

can, in turn, simplify the object recognition algorithm as it can focus attention solely on the
region where the object is likely to be present. This reduces the search space and the required
computational resources. Object detection frameworks like YOLO (You Only Look Once) and
Faster R-CNN fall under this category. They divide the RGB image into a grid and predict
bounding boxes and class probabilities directly from the grid.

In parallel to deep learning, the recent availability of inexpensive RGB-D sensors has
enabled significant improvements in scene modeling and human pose estimation. Some studies
explore the fusion of multiple modalities to enhance object recognition. These approaches
combine visual information with other sensory data, such as depth information from 3D
sensors [51], [52]. This integration of modalities has shown promise in improving recognition
accuracy, especially in scenarios with varying lighting conditions or occlusions. Researchers
have also studied how to leverage information from multiple viewpoints (i.e., multi-view 3D
object recognition) to enhance recognition accuracy [53]. This approach is particularly relevant
for 3D objects, where recognizing an object’s 3D structure from different viewpoints can aid
in robust recognition. Techniques like using 3D point clouds, multi-view CNNs, or methods
that combine RGB images and depth information fall under this category.

Despite their successes, methods within the "Object Sensing" category are often constrained
by the variability of object appearances, limited viewpoint coverage, and sensitivity to
illumination changes. As a result, the focus on object characteristics alone may not provide
a complete solution, particularly in situations where the human hand’s interaction with the
object plays a crucial role.

2.3.2 Hand Sensing

Recognizing objects based on the interactions of the human hand is a complex problem
due to the intricate nature of hand-object interactions (HOIs) and the variability in grasp
patterns and gestures [21], [54]–[56]. Achieving accurate and real-time recognition involves
understanding the relationships and dynamics between a human hand and the objects it
interacts with (e.g., the interaction context, the person’s actions, and the patterns that emerge
over time), as well as the tactile and kinesthetic feedback generated during manipulation.
Additionally, variations in grasp styles, object sizes, and orientation further worsen the
complexity of the task. Several works propose interaction reasoning networks for modeling
spatio-temporal relationships between hands and objects in egocentric videos during activities
of daily life, such as playing an instrument, kicking a ball, opening a drawer (one-handed
interaction), opening a bottle (two-handed interaction, cutting a vegetable with a knife). Main
advances are due to the development of several human-centric datasets (e.g., V-COCO [57],
HICO-DET [54] and HCVRD [58]) that annotate the bounding boxes of each human actor,
the object with which he/she is interacting and the corresponding interaction. However, the
creation of large-scale, diverse, and annotated datasets was still an ongoing effort.

Some works consider the HOI as a manifestation of human intention or purpose of
action [59]–[63]. Despite the growing need for detection and inference of HOIs in practical
applications, such as collaborative robotics, the problem of recognizing objects based on

17

hand-object interactions is inherently complex. Instead of addressing the full complexity
of HOI recognition, several works have adopted targeted approaches that address specific
aspects of the problem without necessarily delving into the entire spectrum of interactions.
A recent work investigated the influence of physical properties of objects such as shape,
size, and weight on forearm electromyography (EMG) signals and the opportunities that
this sensing technology brings in hand-object interaction recognition and/or for object-based
activity tracking [64]. Despite the relevance of the work, it is difficult to apply in collaborative
assembly scenarios given the complexity of the required setup that requires sensor attachment,
calibration, and training. Some other limitations may include user-dependent variability,
muscle fatigue and discomfort, and/or interference from other electrical devices.

Another line of research, closest to this work, focuses on tracking the positions of hand and
finger landmarks during interactions. By monitoring the spatial relationships of these land-
marks, these methods aim to deduce the object’s identity based on the specific manipulations
applied. This approach captures critical information about the hand’s interaction without
necessarily modeling the full complexity of interactions. A glove-based interaction approach
has been proposed by Paulson et al. [65] in the HCI domain to investigate a grasp-based
selection of objects in office settings. Authors showed that hand posture information solely
can be used to recognize various activities in an office, such as dialing a number, holding a
mug, typing at the keyboard, or handling the mouse. The classification of hand posture is
performed using the nearest-neighbor algorithm. In a similar work based on a data glove,
Vatavu et al. [66] proposed the automatic recognition of the size and shape of objects using
the posture of the hand during prehension. The objects used in the experiments consisted of
six basic shapes (cube, parallelepiped, cylinder, sphere, pyramid, and a thin plate) and, for
each shape, three different sizes (small, medium, and large). Twelve right-handed participants
took part in the experiments using a 5DT Data Glove Ultra equipped with 14 optical sensors.
These sensors are distributed as follows: 10 sensors measure finger flexion (two sensors per
finger) and four sensors measure abduction between fingers.

The study compared several classifiers derived from the nearest-neighbor approach with a
Multi-Layer Perceptron (MLP) and a multi-class SVM. The best results were achieved with the
K-nearest-neighbor classification approach when combining the results of individual postures
across an entire time window of half a second. The experiments carried out included the
capture of hand postures when grasping and maintaining a stable grip for reliable translation
of the objects. The results showed that object size and shape can be recognized with up
to 98 % accuracy when using user-specific metrics. The authors also pointed out the lower
accuracy for user-independent training and the variability of individual grasping postures
during object exploration. Although in general, the proposed approach recognizes the physical
properties of the grasped objects with high accuracy, wearing a glove directly on the hand is
intrusive and troublesome, interfering with the natural movement of the fingers.

When attempting to model human grasping, researchers have focused their attention on
defining a comprehensive taxonomy of human grasp types [67] and the multifaceted factors
that influence the choice of grasping, including user intentions [68], object properties [69], and

18

environmental constraints [70]. MacKenzie and Iberall [68] theorize the existence of a cognitive
model that converts the object’s geometry properties and user’s intent into a motor program
driving the hand and finger motions. From this seminal work, several studies on human
reach-to-grasp actions have consistently shown that the natural kinematics of prehension
allows for predicting the object he/she is going to grasp, as well as the subsequent actions
that will be carried out with that object. Feix et al. [69] provided an analysis of human
grasping behaviors showing the correlation between the properties of the objects and the grasp
choice. More recently, the works of Betti et al. [71] and Egmose and Køppe [72] focus on the
reach-to-grasp phase. Their finding shows that grasp formation is highly correlated with the
size and shape of the object to be grasped, as well as strongly related to the intended action.
These insights promise improved interaction by exploring the ability in which the robot can
predict the object the user intends to grasp or to recognize the one he/she is already holding,
provided that the hand kinematics information is extracted and processed in real-time.

In line with this, Valkov et al. [73] investigated the feasibility and accuracy of recognizing
objects based on hand kinematics and LSTM networks. The data is extracted from a Polhemus
Viper16 electromagnetic tracking system with 12 sensors attached to the hand and fingers. On
the one hand, the study focuses on the size discrimination of 9 synthetic objects: three regular
solids (sphere, box, and cylinder) in three different sizes (small – 2 cm, medium – 4 cm and
large – 6 cm). On the other hand, a different set of seven objects (pen, glue, bottle, Rubik’s
cube, volcano-egg, toy, and scissors) was used for object discrimination. The data recorded
during the experiments includes a phase in which participants were asked to reach and grasp
the object starting from a fixed initial position. The results demonstrated that LSTM networks
can predict the time point at which the user grasps an object with 23 ms precision and the
current distance to it with a precision better than 1 cm. Furthermore, the size and the object
discrimination during the reach-to-grasp actions were achieved successfully with accuracy
above 90 % using K-fold cross-validation. Although the results are still preliminary, the leave-
one-out cross-validation showed a significant degradation in the performance of the models
compared to the K-fold validation. While the tracking system offers many advantages, there
are also practical limitations such as sensor attachment and comfort, line-of-sight requirements,
interference and noise, and calibration and drift.

19

CHAPTER 3
Human-Robot Collaboration System

This chapter describes the hardware and software tools used during development and
the ROS-based architecture to support a practical implementation of action anticipation in
human-robot collaboration. In particular, Section 3.1 details the system architecture including
the available hardware and the software tools chosen to establish communication between
all the parts. Section 3.2 describes the research methodologies employed in this dissertation.
Section Section 3.3 delves into the implementation of initial experiments which integrate all
the parts to simulate anticipatory behavior. Section 3.4 provides final remarks about the
content of this chapter and its connection to the next.

3.1 System Architecture

The work described in this dissertation is part of the AUGMANITY project1 that aims to
develop technologies to support people operating in industrial environments. The experimental
setup comprises the integration of both hardware and software components in a prototype
collaborative cell (LARCC) at the Laboratory for Automation and Robotics (LAR) located
in the Department of Mechanical Engineering at the University of Aveiro, as illustrated in
Figure 3.1. The LARCC is equipped with a UR10e collaborative robot and multimodal sensor
devices, including three LiDAR Velodyne sensors and four Orbbec 3D cameras distributed
throughout the work volume. The software architecture is built upon the Robot Operating
System (ROS) middleware [74], providing a robust framework for communication and coordi-
nation among the various components. In this context, this section provides a description of
the materials used during this study and the methodological approaches followed to face the
key challenges.

1AUGMANITY website: https://www.augmanity.pt

21

https://www.augmanity.pt

Figure 3.1: Prototype collaborative cell LARCC.

3.1.1 Robot Operating System (ROS)

ROS[75]2,3 is an open-source collection of tools and software libraries used to develop
a robotics application and, in this work, it is used to establish communication throughout
all of the infrastructure. ROS was chosen due to the hardware abstraction it offers given
that it contains driver packages to deal with some hardware devices, allowing for easier
communication with the robot and the cameras. Other relevant features include:

• message broker: every process in the project is a node in the ROS network and com-
municates with the other nodes mainly through topics (asynchronous publish/subscribe
streaming of data) or services (synchronous RPC-style communication).

• code reuse: executables and packages are written to be as independent as possible,
making the developer able to reuse them in another project.

• rich ecosystem: there are several open-source packages available to the developer that
can be easily integrated.

• scalability: given that the nodes are so loosely coupled, it allows for node distribution.
• language independence: nodes can be written in any language since communication

is established through well-defined objects.
• data visualization: there are tools to visualize the data and the functioning of the

system in real-time, such as Rviz.
• simulator support: ROS has support for simulators with Gazebo being the most

common.
For this system, the ROS 1 Noetic distribution was chosen over the more recent ROS

2 distributions so as to take advantage of work already done by other members of the
AUGMANITY project at the University of Aveiro.

2ROS 1 documentation: https://wiki.ros.org
3ROS 2 documentation: https://docs.ros.org/en/humble

22

https://wiki.ros.org
https://docs.ros.org/en/humble

3.1.2 Perception System

In order to capture the necessary information from the environment, two Orbbec Astra
Pro RGBD cameras were used (Figure 3.2). This camera model was developed by Orbbec
Technologies and it is frequently used in computer vision and robotics [76]. Among the
available cameras, it was chosen since it allowed to capture both color and depth images.

Figure 3.2: Orbbec Astra Pro [76].

In the experimental setup, one of the cameras is placed above the workspace facing
downwards allowing the perception of the objects in the table through the color image and
the position of the user through the depth image. The second camera is above and slightly
behind the robot to capture the user in front of the robot with the images from this camera
being the ones used for detecting the hands keypoints. The communication with the cameras
is established through ROS with the usb_cam package being used for the color image and the
ros_astra_camera package being used for the depth image. In order to have better control
over the lightness in the environment, only artificial lighting was used and the back-light
compensation was raised to the maximum in the usb_cam configurations. Then the frame
rate was also set to 10 frames per second in both cameras given that none of the following
image processing tasks require a high frame rate.

As said before, the color image of the first camera is used to detect objects in the
environment. These objects are blocks of specific colors and therefore they can be identified
with color segmentation, which is done with the help of OpenCV4, a popular computer vision
library. With this library, the image from the camera is initially cropped to a specific region
of interest consisting of the table area, which is then converted from BGR to HSV given that
the intervals of a color are more reliable in this representation. From the HSV image and
the color intervals, a mask is obtained for each color. These masks are then subject to a
closing morphological operation to reduce any possible noise. Finally, the resulting areas are
considered an object if they surpass a certain area threshold further reducing noise.

On the other hand, the depth image is used to obtain the position of the human in the
workspace by cropping it to a certain region of interest corresponding to where the user would
normally be and then detecting the highest point.

3.1.3 Manipulator Arm Control

The collaborative robot available for this work is a UR10e model which was developed by
Universal Robots (left side of Figure 3.3). This model has six degrees of freedom with six

4OpenCV documentation: https://docs.opencv.org/4.x/

23

https://docs.opencv.org/4.x/

rotational joints, allows for payloads up to 12.5 kg, and has a reach of 1300 mm being suitable
for tasks such as machine tending, palletizing, and packaging[77]. In this work, the robot is
equipped with a 2F-140 gripper developed by Robotiq (right side of Figure 3.3), commonly
used together with robot models from Universal Robots[78].

Figure 3.3: UR10e Collaborative Robot [79] and Robotiq 2F-140 Gripper [78].

Both the robot and the gripper have ROS packages containing their drivers making their
integration easier. The planning and execution of the arm movements are done through the
MoveIt5 framework, which is a widely-used open-source framework for robotics applications
involving motion planning, manipulation, 3D perception, kinematics, control, navigation, and
collision checking, with OMPL being chosen to handle the motion planning tasks.

The configurations of the drivers and MoveIt was already done by other members of
the AUGMANITY project and can be found on Github6 along with a higher-level API that
encloses that logic. During this work, an additional feature to stop movements was added.

3.1.4 Computational Systems

The tasks involved in this work, such as training deep-learning models and analyzing
images in real-time require high computational resources. To handle the real-time processing
of images and robot control, the central computer present in the setup was used. To handle
the deep-learning model training, the deep-learning research server from LAR was used,
codenamed Deeplar:

• AMD RyzenTM Threadripper 2950X;
• Four NVIDIA GEFORCE® RTX 2080 Ti;
• 128GB DDR4 RAM.
The model training in Deeplar is executed using docker images, which allows multiple

people to use the computer with each having their own isolated training environment with
their own dependencies. The images used to design and train machine learning models in this
work are based on the latest TensorFlow official image for GPUs which uses Python.

5MoveIt documentation: https://ros-planning.github.io/moveit_tutorials
6Github LarCC Repository: https://github.com/afonsocastro/larcc_interface

24

https://ros-planning.github.io/moveit_tutorials
https://github.com/afonsocastro/larcc_interface

TensorFlow is one of the most popular machine learning frameworks along with Pytorch.
In this work, the former was chosen over the latter since the higher-level API allowed for
faster development. The main features of Tensorflow7 are:

• prepare data: load data, data pre-processing and data augmentation;
• build models: design and train custom models with little code or use pre-trained ones

(transfer learning);
• deploy models: helps using models in different platforms such as locally, in the cloud,

in a browser, or in mobile;
• implement MLOps: run models in production, tracking their performance and

identifying issues.
As seen above, this work employs several tools, with Python being the common program-

ming language between them and, therefore, the chosen language to ensure compatibility.

3.2 Software Tools and Deep Architectures

This section covers the software tools and deep architectures employed in this dissertation
to research anticipatory systems.

3.2.1 Keypoints Detection Frameworks

This subsection reviews OpenPose, OpenPifPaf, and MediaPipe which are three projects
containing models to detect keypoints in images, such as the human skeleton joints.

OpenPose

OpenPose[55], [80]–[82]8 is an open-source project that aims to detect keypoints in the
human body, face, hands, and feet from images (Figure 3.4). Its main features are:

• 2D real-time keypoint detection based on the body/foot, the hand, or the face of multiple
people;

• 3D real-time keypoint detection based on images from multiple cameras of one person;
• estimation of camera calibration parameters;
• single-person tracking;
• can be used through the command line or using an API for Python or C++.

Figure 3.4: OpenPose Examples [55], [80].

7Tensorflow documentation: https://www.tensorflow.org/api_docs
8OpenPose documentation: https://cmu-perceptual-computing-lab.github.io/openpose

25

https://www.tensorflow.org/api_docs
https://cmu-perceptual-computing-lab.github.io/openpose

OpenPifPaf

OpenPifPaf[83], [84]9 is an open-source project that aims to detect, associate, and track
semantic keypoints (Figure 3.5). Detecting human joints is an example of its usage but it
is also able to generalize this detection to other classes such as cars and animals. It can be
installed as a Python package which can then be imported.

Figure 3.5: OpenPifPaf Example [83].

MediaPipe

MediaPipe10 consists of a set of libraries and tools to apply AI and ML techniques in
other applications, particularly in pipelines for advanced real-time vision-based applications
[85]. Although it contains many features, in this work the focus is on the Hand and the Pose
Landmark Detection Models. The Hand Landmark Detection model [86] uses two sub-modules:
a hand palm detection model and a hand landmark model. Each frame of an RGB input
is fed into the palm detection model, which produces a bounding box based on the palm.
The hand landmark model uses this bounding box and returns the keypoint localization of
21 landmarks, including the fingertips, the finger joints (knuckles), and the base of the palm
(Figure 3.6a). The Pose Landmark Detection model also uses two sub-modules working in a
similar way to return 33 landmarks over the entire body (Figure 3.6b).

(a) (b)

Figure 3.6: Mediapipe landmarker models [87]: (a) Hand Landmarker and (b) Pose Landmarker.

9OpenPifPaf documentation: https://openpifpaf.github.io
10MediaPipe documentation: https://developers.google.com/mediapipe

26

https://openpifpaf.github.io
https://developers.google.com/mediapipe

From the three keypoint detection frameworks reviewed, MediaPipe was chosen for this
work due to being easier to install compared to OpenPose, and having no dependency conflicts
with other tools, which OpenPifPaf had. Additionally, MediaPipe was already being used by
other members of the AUGMANITY project.

3.2.2 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are currently one of the most popular deep learning
architectures and they are typically used to take advantage of the matrix structure of input
data such as images and video where the input is too massive for other methods [88]. This
architecture was originally introduced in a 1988 article [89] and has since evolved, giving rise
to new variants. According to Alom et al. [90], the main building blocks are:

• Convolutional Layer: in this layer, feature maps are extracted from receptive fields,
which are parts of the input such as a region of pixels in an image or lower-level feature
maps. This is done using a learnable kernel, consisting of a sliding window that goes
through the entire input, computing the feature maps.

• Sub-Sampling Layer: this layer is responsible for downsampling the input feature
maps effectively reducing the dimension of each feature map. It can also be named a
pooling layer with the most common strategy being Max Pooling which simply returns
the maximum value of the input.

• Classification Layer: this layer is composed of a variable number of fully connected
layers that use the higher-level features computed in earlier layers to obtain the final
scores of each class.

The global architecture is then described as the junction of two main parts: Feature
Extractors and a Classifier (Figure 3.7). The first part is composed of one or more pairs of
convolutional and pooling layers. The repetition of these layers results in the progressive
reduction of feature dimensions, allowing higher-level features to be derived from the previous
layers. Finally, the classifier is made up of fully-connected feed-forward layers and a final
classifier layer and it is responsible for converting the higher-level feature maps into an array
of scores for each class.

Figure 3.7: CNN Architecture [90].

27

3.2.3 Transformer Neural Networks

Transformer Neural Networks consist of a new kind of neural network architecture that
aims to solve tasks involving sequence data such as those in natural language processing.
They were initially proposed in the "Attention Is All You Need" paper published by Google
Research in 2017 [91] and proceeded to surpass several established architectures in numerous
tasks using attention mechanisms that identify complex relationships between elements in
the input sequence. According to Kapoor et al. [92], the transformer’s architectures are built
upon 4 core concepts:

• Positional Encoding - RNNs are able to work with sequences given that the tokens
are processed sequentially. However, this approach comes with the disadvantage of the
model having greater difficulty in analyzing long sequences, since important data might
be forgotten. Transformers address this issue by using positional encoding, assigning
a unique number to each token representing its position in the input sequence. This
enables the transformer to learn the significance of each token’s position.

• Attention - Attention is a concept that consists of measuring the relative importance
of the input tokens to the output tokens. It was initially designed to facilitate language
translation given that, when translating text from one language to the other, each word
in the output can be influenced by multiple words from the input, and it became a key
idea behind the transformer’s architecture.

• Self-attention - Self-attention derives from attention but consists of measuring the
relative importance of the input tokens to the other tokens of the input sequence instead
of the output tokens. This concept allows the model to learn the relationships between
tokens and their relevance in the input sequence even if they are far away.

• Multi-head (self-)attention - Multi-head (self-)attention refers to the fact that a
transformer can have multiple attention heads. Each attention head performs a parallel
process of (self-)attention allowing for multiple resulting weight matrices and, therefore,
multiple definitions of relevance between the tokens.

Figure 3.8 shows the first published Transformer architecture. Initially, positional encodings
are added to the input and output embeddings providing information about the relative
positions. Then, in the encoder (left side of the figure), the input goes through a multi-head
(self-)attention layer and a position-wise feedforward layer. In the decoder (right side of the
figure), a different multi-head attention is applied on the output embeddings, and its output
is used alongside the output of the encoder in another multi-head self-attention layer ending
in a feedforward layer. Finally, the output of the last Transformer block is passed on to a
dense layer converting it into a sequence of probabilities.

28

Figure 3.8: Transformer Architecture [91].

3.3 Integration of First Anticipation Experiments

This section covers the integration of previously described tools and then the implementa-
tion of the first experiments to simulate anticipatory behavior in HRC.

3.3.1 Assembly Task: Build a Striped Flag

To establish the required infrastructure, it was essential to define a concrete problem for
evaluation, preferably involving some form of anticipation. For this work, it was chosen to
put together sequences of big Lego blocks. The goal of the interactions would be to put three
blocks together whose colors would be comparable to the stripes of a flag (Figure 3.9). In
total, ten big cubic Lego blocks were used for this task: two red, two dark blue, two light blue,
one white, one yellow, one green, and one orange. Additionally, there are also eight small
blocks, one of every color mentioned in addition to violet, that are used for the interactions
with the user.

29

Figure 3.9: Flag examples.

Figure 3.10 shows the work environment with the table and the robot. The big blocks
are initially placed behind the robot, with the robot being responsible for picking them up
and placing them next to the user so that the user can build a flag. Then, there are also
eight small blocks placed in front of the user that can be used for the interactions. The small
violet block is used to tell the robot that it is fetching the wrong block by hovering it. The
remaining small blocks are used to request that the next block is of a certain color by hovering
them.

Figure 3.10: Work environment: red - small block hovering area, blue - robot workspace with the
remaining blocks, green - flag assembling area, yellow - user area.

Before the anticipation experiments, a base infrastructure was developed to build upon,
integrating the perception system described in subsection 3.1.2 and the manipulator arm
control system described in subsection 3.1.3. Both of them are connected to the ROS network
and therefore an additional node was added to it to manage the communication between them
and the decision-making in the system (Figure 3.11). For this purpose, this node contains

30

a state machine where each state corresponds to a method of a class. As such, to integrate
additional features or logic in the system, one only needs to create a subclass and redefine the
relevant methods.

Perception
System

Decision
Making

Manipulator
Arm Control

blocks
position

user
position

go to posi-
tion/stop

success/failure

Figure 3.11: General ROS architecture with decision-making node.

The initial decision-making logic developed relied on interactions between the robot and
the user. When the user puts his hand above a small block, if the robot is idle, then it
proceeds to fetch a block of the same color. Additionally, when the user hovers his hand over
the violet block while the robot is fetching a block, it means that the robot is fetching the
wrong block, so it must stop and put the block back where it was before if it was already
picked up. These interactions are also the fallback behavior if the methods in the following
experiments fail to anticipate the block that the user desires.

State Machine Logic

As said before, the decision-making node contains an internal state machine. Although
the logic of some states changes depending on the solution, all implementations follow the
same general design represented in the state machine diagram shown in Figure 3.12.

• idle: state corresponding to when the robot does not know which is the next block.
If the sequence has not started yet then it waits for the user to choose the first block
and then the state changes to picking up. If the sequence has already started then the
database is fetched for the possible next blocks and then if at least one block is returned
the state changes to picking up or if none is returned the system waits for the user to
choose the next block.

• picking up: state corresponding to while the robot is picking up a certain block. After
it picks it up the state changes to moving closer unless it was picking the wrong object
in which case it changes to stop wrong guess.

• moving closer: state corresponding to the movement until the put-down position
opposite to the user so that the robot does not constrain him. After the robot reaches
the put-down position the state changes to putting down. If the robot is holding the
wrong object then the state changes to stop wrong guess instead and if the user changes
side the state changes to stop side switch.

• putting down: state corresponding to the movement necessary to put down the block
in the table and the retreat of the robot outside the user’s workspace. After that, the
state changes to idle.

31

idle picking
up

moving
closer

putting
down

stop side
switch

stop
wrong
guess

knows
which block
is the next

object
picked up

robot in
put down
position

robot
retreated

user
changed

side

robot
stopped

wrong
assembly
sequence

wrong
assembly
sequence

reverted
previous

guess

Figure 3.12: State machine diagram.

• stop side switch: State corresponding to the action of stopping the robot because the
user changed sides. After the robot is stopped the state changes back to moving closer.

• stop wrong guess: state corresponding to the action of stopping the robot because
the user indicated that it was the wrong block. If the robot was already holding a block
then that block is put back where it was while in this state. After the robot is stopped
and it is not holding a block the state changes to picking up if there are still more
possible blocks in the database. Otherwise, the state changes to idle so that it waits for
a user request.

3.3.2 First Anticipation Experiments

This subsection describes the implementation and the workflow of the different experiments
performed.

Probability Based

The first experiment consisted of having a database of probabilities that the robot would
check to anticipate the block that the user would need next. In this experiment, when the
decision-making node starts, it reads a configuration file with all the possible flags and then
calculates and saves in a database the conditional probabilities of a certain color considering
the previous ones.

When assembling a flag, the first block is still requested by the user but the following
blocks are automatically given to the user according to the probabilities. However, if the
robot chooses the wrong block the user can still communicate that fact by interacting with

32

the small violet block and, if the robot exhausts all possibilities that it knows of, the user can
request the following block using the interactions with the other small blocks.

Rule Based

The second experiment consisted of having a set of rules that the robot follows to anticipate
the next block. These rules are read from a configuration file when the decision-making node
starts and then managed by Experta11. Experta is a Python library to create and deploy
rule-based systems that make informed decisions using a knowledge base of rules. In this
library, rules are defined as combinations of conditions and actions allowing for an intuitive
syntax. Then, the engine uses these rules to make decisions using the declared information. For
this experiment, some rules were defined about what should be the next block considering the
blocks previously provided and the blocks rejected since the last accepted one. For example,
if the last accepted block was red and the user has since then rejected a dark blue block then
the next block should be a yellow one.

Similarly to the previous experiment, the first block is requested by the user but for the
following blocks, the robot checks if a rule is present for the current situation. If there is one,
the robot follows that rule and provides a block and if there is not, it waits for the user to
request the next block. The interactions for requesting and refusing a block are maintained.

Rule Based + MediaPipe

The third experiment is very similar to the previous one. The rule-based decision-making
is maintained with the same rules but the first block is no longer requested by the user.
Instead, the user picks up the first block and the images from the camera facing the user are
used to detect the color of the object. For this purpose, the pose model from MediaPipe is
employed to detect the hand’s position, which is subsequently used for cropping the received
image to a region of interest. The resulting image is segmented similarly to the images of
the other camera and if a color is detected, then that color is considered the color of the first
block.

3.4 Final Remarks

This chapter has reviewed the necessary components to build a Human-Robot Collaboration
(HRC), beginning by the collaborative cell and how the different components are configured
and capable of establishing communication through ROS. Then, the different tools that
constitute this research are further described, including keypoint detection frameworks such
as MediaPipe, Convolutional Neural Networks (CNNs), and Transformer Neural Networks.
Finally, all components are connected with a a node that determines the robot’s actions.
The first implementation included a database of probabilities that guided which action the
robot should take but this solution proved to have reduced flexibility. Then, the second
implementation used Experta to set up a list of rules to decide the action the robot should
take next with a configuration file, a characteristic that made the robot’s behavior more

11Experta documentation: https://github.com/nilp0inter/experta

33

https://github.com/nilp0inter/experta

flexible since the rules could be easily changed. Finally, the last implementation integrated
MediaPipe not only to reduce the direct communication between the robot and the user but
also in preparation for its use in the next chapter.

34

CHAPTER 4
Learning-Based Recognition of

Human-Grasped Objects

This chapter covers the development of machine learning models to recognize human-
grasped objects. In particular, Section 4.1 formulates the problem with detail and describes
the evaluation metrics. Section 4.2 details the data collecting and the dataset preprocessing
and splitting. Section 4.4 and Section 4.5 describe the implementation of the CNN and
Transformer models respectively and their results. Section 4.6 compares the results of both
models in different cases. Section 4.7 delves into a possible implementation of a real-time
implementation of anticipation along with possible limitations and solutions. Section 4.8
provides the final remarks about the models’ performance.

4.1 Proposal Framework

4.1.1 Approach

This dissertation proposes a learning-based framework to enable an assistive robot to
recognize the object grasped by the human operator. As illustrated in Figure 4.1, the proposed
framework combines the strengths of MediaPipe in detecting hand landmarks in a RGB
image with a deep multi-class classifier that predicts the object based on the configuration
of the user’s hand after grasping it. Accordingly, the developed object recognition system
operates based on different principles, including the sensing device, the tracking method, and
the machine learning approaches. From the point of view of the application in industrial
settings, the proposed system has two strengths when compared to the use of data-gloves or
electromagnetic motion capture systems. First, the simplicity of installation is associated with
a much less complex and costly setup. Second, the non-intrusiveness of the required setup is a
valuable factor in accelerating the acceptance of these technologies by humans in carrying out
collaborative tasks (a process also referred to as "user adoption"). In contrast, vision-based
hand tracking is affected by occlusions, changes in light conditions, and cluttered backgrounds.

35

Furthermore, these problems are difficult to overcome with deep-learning techniques given the
data dependency and generalization problems against hands, objects, and lighting conditions
outside the training sets. Overall, this paper contributes to advances in understanding the
opportunities and limitations of using this novel approach for the recognition of human-grasped
objects.

Input Hand Landmarkers Estimation
® MediaPipe pre-trained models

Multi-Class Classif er for Object Recognition
® CNN vs. Transformer neural network arquitectures

Right-hand
keypoints (x,y,z)

Output

Pose Landmarks
Detection

Hand Landmarks
Detection

Raw-image
640´480 pixels

Class
probability

Preprocessing
Prediction

Model

Figure 4.1: The proposed learning-based framework for object recognition based on the hand
keypoints.

The output of the pre-trained model provides the (x, y, z) coordinates of landmarks for
each detected hand. The (x, y) coordinates represent the horizontal and vertical positions
of the landmark on the image plane, while the z-coordinate represents an estimate of the
relative depth with respect to the wrist reference [93]. This work focuses on tracking the
right hand by combining the Hand Landmark detection and the Pose Landmark Detection
pre-trained models. This strategy proved to be useful to enhance the reliability of the process
of extracting the coordinates of the right-hand keypoints from each frame.

The multi-class classifier for object recognition faces several challenges. First, there is
limited information about the three-dimensional configuration of the hand, namely if the
hand configurations involve overlapping fingers or positions close to each other in the image
plane. Consequently, the z-coordinate (relative depth) revealed to be a critical element for
discriminating complex hand configurations. Second, the coordinates provided by MediaPipe
can vary in scale and rotation depending on the hand’s distance from the camera and the
hand’s orientation in the image, adding complexity to the task. For these reasons, a deep
learning model able to learn complex features directly from the MediaPipe coordinates will
be explored and evaluated with a view to its generalization ability in different scenarios and
for various users.

The learning problem involves a mapping between two spaces f(X, θ) : X → Y , where
X ∈ R3×21 is the set of possible spatial coordinates of the hand keypoints, Y ∈ RM is the set
of possible M output classes, and θ the model parameters. Let D = {(x1, y1), · · · , (xn, yn)}
be a training dataset of n examples where xi ∈ X is an input and yi ∈ Y is the corresponding
ground truth class label. Given a new instance xnew, the task is to predict its corresponding
object class ypred, such that:

ypred = f(xnew). (4.1)

36

The model aims to minimize a chosen loss function L that quantifies the dissimilarity
between the predicted class ypred and the ground truth class yi. Formally, the training process
seeks to find the optimal parameters θ̂ of the mapping function f by solving the following
optimization problem:

θ̂ = argmin
θ

1
n

n∑
i=1

L (fθ(xi), yi) , (4.2)

where fθ(xi) is the predicted class label for sample xi using the model with parameters θ, and
L is a suitable loss function. Upon successful training, the model f can be used for predicting
the object class ypred for new instances of hand keypoints.

4.1.2 Evaluation Metrics

To properly ascertain the performance and generalization capability of deep learning
models, metrics must be employed. Accuracy is one of the most widely used metrics in the
realm of deep learning, representing the proportion of correctly classified examples among all
samples in the dataset, calculated as follows:

ACC = Number of Correct Predictions

Total Number of Predictions
. (4.3)

Although accuracy clearly assesses the model’s performance, it may not be recommended
in some situations, like when working with an imbalanced dataset. Therefore other metrics
should be used, such as:

• True Positive (TP) - instances correctly classified as positive;
• True Negative (TN) - instances correctly classified as negative;
• False Positive (FP) - instances incorrectly classified as positive;
• False Negative (FN) - instances incorrectly classified as negative;
• Positive Predictive Value (PPV) or Precision, which is the percentage of instances

correctly classified as positive relative to all instances classified as positive:

PPV = TP

TP + FP
; (4.4)

• True Positive Rate (TPR) or Recall, which is the percentage of positive instances that
are classified as positive:

TPR = TP

TP + FN
; (4.5)

• F1-Score, which is the harmonic mean between the precision and the recall:

TPR = 2PPV × TPR

PPV + TPR
= 2TP

2TP + FP + FN
. (4.6)

Precision is a relevant metric to use when the aim is to minimize false positives, while
Recall is relevant to minimize false negatives. F1-Score includes the two of them, with both
false positives and false negatives influencing the result.

In a multi-class classification problem, such as the one in this work, these metrics are
obtained separately for each class and then averaged across all classes to obtain a final metric.

37

In addition to the previous metrics, a Confusion Matrix can be used to visually represent
the model’s performance in a tabular way. Each entry i, j contains the number of instances
from the class i that are classified as belonging to the class j (e.g., Figure 4.2a). A confusion
matrix can also undergo normalization by dividing each entry by the sum of its row so that
each entry provides ratios instead (e.g., Figure 4.2b).

class 1 class 2 class 3

cl
as

s
1

cl
as

s
2

cl
as

s
3

Tr
ue

La
be

l

57 1 1

0 57 1

1 14 43

Predicted Label

(a)

class 1 class 2 class 3

cl
as

s
1

cl
as

s
2

cl
as

s
3

Tr
ue

La
be

l

0.97 0.02 0.01

0.00 0.98 0.02

0.02 0.24 0.74

Predicted Label

(b)

Figure 4.2: Confusion matrices examples: (a) non-normalized and (b) normalized.

4.2 Data Representation

The four objects selected for this study are all "graspable", i.e., more or less rigid. They
include a cylindrical water bottle, a Rubik’s cube, a flat and thick smartphone, and a small
and sharp screwdriver (Figure 4.3). Given the differences in shape, size, and/or weight, the
goal is to discriminate these four objects based on the configuration adopted by the hand
while interacting with them. This section will start by validating the MediaPipe framework
given the fact that it is an external tool and then it will detail the dataset acquisition, the
data pre-processing, and the data splitting.

Figure 4.3: The objects used in the study include a water
bottle, a Rubik’s cube, a smartphone, and a screwdriver.

38

4.2.1 MediaPipe Suitability Validation

The MediaPipe software was used to extract the required landmarks automatically from
the video input. A recent study by Amprimo et al. [93] evaluated the performance of the
basic MediaPipe Hand [86] and an enhanced solution using depth data [94] against a motion
capture system using an Optitrack solution comprising six Prime13 cameras. The focus was
on the usage of such hand-tracking frameworks in clinical applications, such as automatic
motion quality assessment, as well as the influence on the tracking quality of factors such
as distance from the camera, camera viewing angle, and velocity of the motion. The results
show that the use of the hands model based on an RGB input provides a good level of trust
in terms of tracking accuracy.

In the same line of thought, the question arose of evaluating the reliability of the hand
tracking software in situations where the hand grasps an object, taking into account the
model’s level of confidence [86] in the localization of the hand landmarks. The MediaPipe
Hands Model can detect a variable number of hands in an image, and it was set up so that it
would only detect up to two hands, meaning that its output can consist of no hands detected,
of a set of 21 points hand detected, which can be either the left or the right hand, or two sets
of 21 points if both hands were detected. Thus, before acquiring the dataset, the success of
the MediaPipe framework in identifying the hand keypoints was evaluated in two cases.

Firstly, it is important to understand if it can consistently detect the right hand in different
situations. To achieve this, four scenarios were considered: hand open, hand closed, hand
holding bottle, and hand holding phone with all of them being recorded both still and making
similar movements. First, the hand remained stationary during the acquisition of 250 frames,
considering both the hand without interacting with an object and the hand grasping each of
the objects selected in the study. The results in Table 4.1 show that MediaPipe achieves a
success rate of nearly 100 % when the hand is not interacting with an object and fluctuates
between 93.2 % and 99.2 % when it grasps an object. Second, the hand performed random
movements, resulting in lower success rates: approximately 98.4 % without an object and
values between 83.2 % and 84.8 %, depending on the object. These success rates can be
considered acceptable since once in operation the classifier will tend to consider several frames,
and not just one, to make a more reliable decision. Despite this, in Table 4.1 which shows the
longest sequence of consecutive frames without generating keypoints, more complex occlusion
situations can be observed in which MediaPipe did not return valid coordinates for a 4-second
interval. This may lead to rethinking the best camera location (e.g., environment- versus
robot-mounted camera) and, eventually, the number of cameras to use.

Table 4.1: Percentage of frames with detected right-hand keypoints

Hand Open Hand Closed Holding Bottle Holding Phone
No Movement 100 % 99.6 % 99.2 % 93.2 %
In Movement 93.2 % 98.4 % 83.2 % 84.8 %

39

Table 4.2: Longest sequence of empty frames

Hand Open Hand Closed Holding Bottle Holding Phone
No Movement - 1 2 17
In Movement 17 4 42 38

Given that the scope of this work is restricted to scenarios where the user grasps the
objects with his right hand, the detected hands in each instance need to be filtered according
to their handedness to avoid wrong predictions. This information can be given directly by the
hands landmarker and by using the pose landmarker. The latter option is more reliable but
it also increases the amount of processing. To decide wether the pose landmarker should be
incorporated into the data processing or the hand landmarker is reliable enough, the results
in Table 4.3, consisting of the percentage of frames both models agree on, were obtained with
videos of a user in different scenarios. These results show that for most frames both models
agree about the handedness of the detected hands, but when the right hand is grasping objects
that require less common hand geometries, especially the screwdriver, the hands model is only
able to correctly classify the handedness 55.1 % of the frames. To avoid this source of error,
the images are also processed by the more reliable pose landmarker.

Table 4.3: MediaPipe hand and pose model concordance percentage in different scenarios

Hand Holding Holding Holding Holding Hand
Visible Bottle Cube Phone Screwdriver Obstructed

Left Hand 97.2 % 91.9 % 71.5 % 97.3 % 57.1 % 88.7 %
Right Hand 95.5 % 88.7 % 99.2 % 92.0 % 96.4 % 98.7 %
All Hands 92.7 % 81.5 % 71.1 % 89.3 % 55.1 % 87.4 %

4.2.2 Dataset Acquisition

The first step to train a supervised machine learning model is to find a dataset. However,
given that this problem is particular, the dataset had to be manually collected. For this
purpose, a dataset was collected consisting of videos where one person would move and rotate
a particular object (example frames in Figure 4.4). This acquisition involved the participation
of three right-handed (male) volunteers aged between 23 and 26 years old. Participants were
asked to naturally grab and hold an object placed on a table, followed by executing small
movements of the hand in free space. These movements were performed while introducing
random variations in the hand’s orientation relative to the RGB camera to ensure diversity in
the points of view from which the hand-object interaction is observed.

Naturally, the successive frames could lead to similar grasping patterns from different views.
To investigate intra-user variability and to ensure robust model training, users are instructed
to perform multiple grasping trials of the selected object across four distinct acquisition
sessions. Bearing this in mind, the data acquisition system was designed to facilitate the fast
generation of training datasets, accommodating the inclusion of new users and/or additional
acquisition sessions. On the one hand, the system is integrated into the workflow of the

40

Figure 4.4: Dataset examples holding a bottle (left) and a phone (right).

proposed object recognition framework. On the other hand, it is particularly well-suited for
implementation in industrial settings where end-users may not possess extensive expertise
in machine learning or computer vision. The instructions provided to users during the data
acquisition sessions were intentionally straightforward, ensuring that non-experts could readily
participate in the process.

Videos over four sessions per user were recorded at 10 frames per second. For each object
and each user, four data acquisition sessions were carried out, which gave rise to the dataset
used in the study. Therefore, the dataset consists of a total of 11 054 samples, distributed
practically equally across the three participants (around 3600 samples per participant) and
the four objects (between 2618 and 2849 samples per object). The exact number of samples
of the entire dataset per class and per user is shown in Table 4.4.

Table 4.4: Number of samples in the dataset per class and user

Dataset Bottle Cube Phone Screwdriver Total
User1 828 928 950 957 3663
User2 886 926 939 946 3697
User3 904 907 937 946 3694
Total 2618 2761 2826 2849 11 054

4.2.3 Preprocessing

After having a dataset, the data had to be processed to have a fitting structure to be used
in the model training. The images from the videos were processed using the Mediapipe hands
model resulting in 21 points for each hand detected (Figure 4.5).

The points corresponding to the right hand are then subject to further transformations
and normalization. First, the original coordinates of the keypoints (raw data), which are
already normalized within the range of 0 to 1 are converted into coordinates relative to
a reference. Specifically, for each keypoint P = (x, y, z), the coordinates of the reference
point are subtracted Pref = (xref , yref , zref) from them to obtain relative coordinates Prel =
(xrel, yrel, zrel). In this study, the reference is defined as the centroid C of the set of hand

41

Figure 4.5: Points detected on the pictures in Figure 4.4 by Mediapipe Hands Model.

keypoints. This transformation into relative coordinates is particularly useful because the
absolute position of the hands in the image may vary from frame to frame due to different
distances from the camera or hand orientations. Instead, relative coordinates are translation
invariant and they reduce the influence of any rotations that might be present in the raw data.
Therefore, the network will focus on the spatial relationships between keypoints, rather than
their absolute positions, making it less sensitive to hand orientations and scale variations.

After obtaining the relative coordinates with respect to the reference point, scaling is
applied to each dimension independently by dividing by an appropriate constant to ensure
that the hand’s representation spans the entire range, as follows:

scaleFactor = 0.5
max({|xi|, |yi|, |zi|} : i = 1, · · · , n) , (4.7)

where {xi, yi, zi} denote relative coordinates. This feature scaling revealed to be a valuable
pre-processing step to help make the data more consistent, helping the model to learn the
relevant patterns without being influenced by variations in hand position, hand size, or
scale. Further, it helps to maximize the separation among keypoints, helping the model to
discriminate the output class. Finally, a uniform adjustment is made by adding 0.5 to each
coordinate, centering the points between 0 and 1 on the scale. It is important to note that
throughout the point processing, the order of the points is never changed, and therefore the
models can take advantage of this structure. Figure 4.6 shows examples of the normalized
keypoints representation expressed according to the previous steps, that is:

Pnorm = (P − C) × scaleFactor + 0.5 . (4.8)

42

Figure 4.6: Points from the pictures in Figure 4.5 after normalization.

4.2.4 Train-Validation-Test Split

In order to train the model, the entire dataset is initially split into training and test
sets using an indicative 80-20 ratio (the exact ratio can vary slightly depending on the
experiment). Subsequently, the training set is further divided into a training subset and a
validation subset using the same ratio. Additionally, early stopping was set up so that the
model would stop training after 200 epochs without a better validation loss and restore the
best weights. During hyperparameter optimization, the different combinations are tested
using 4-fold cross-validation, which means that the model is trained four times, and therefore
every sample of data in the initial training and validation set was used both for training and
validation.

4.3 K-Means Clustering

Before describing the methodology adopted for recognizing grasping patterns, a statistical
analysis was conducted on the entire dataset obtained from MediaPipe using K-means
clustering. Initially, this algorithm was applied to learn the cluster structure within the
training data. Subsequently, the model’s performance was assessed using a separate and
previously unseen test dataset.

The analysis results are visualized in a 4×4 matrix, denoted as the "True Labels" vs.
"Assigned Cluster" matrix (see Figure 4.7). This matrix provides a comprehensive view of the
K-means clustering method’s performance in object recognition and it enables the computation
of the proportion of objects assigned to each cluster. This cluster analysis provides valuable
insights into the relationships between hand poses and class labels. First, the analysis of the
relationship between clusters and class labels in hand pose data reveals that certain clusters,
like clusters 0 and 3, exhibit a diverse mix of all classes. Second, in the test data, cluster
0 encompasses a substantial 39.8 % of the samples. Third, and of utmost importance, the
K-means clustering results indicate that the clusters do not closely align with the class labels,
which may indeed present challenges for the chosen classifier.

43

0 1 2 3

bo
tt

le
cu

be
ph

on
e

sc
re

w
.

Tr
ue

La
be

l

110 6 284 124

295 39 79 139

227 50 146 142

247 170 79 74

Assigned Cluster

Figure 4.7: The distribution of test dataset samples from each class within each cluster.

The complexity of the problem is increased by user dependency and the variability
observed within the same subject during different trials of grasping the same object. Given
these challenges, a supervised learning approach, such as a CNN, emerges as a suitable
choice, as it can autonomously learn hierarchical features and patterns directly from the
data, irrespective of the initial cluster structure. Deep learning models, in particular, excel in
addressing the intricacies of hand posture recognition and demonstrating robust generalization
across different users, effectively capturing intra-user variations, provided that the training
dataset exhibits diversity and represents the target scenarios.

4.4 Convolutional Neural Network Classifier

Convolutional Neural Networks (CNNs) excel at detecting local relations, which makes
them an advantageous solution for this problem given that each sample provided to the model
is made of the 21 3D points that always follow the same structure representing the right hand.
Although the input data is bi-dimensional (21×3) resulting in a 2D kernel, a one-dimensional
convolutional neural network was used so that the kernel only moves in one direction including
all the point coordinates.

4.4.1 Model Selection

The backbone of the developed CNN comprises a total of three convolutional layers each
with 64 feature maps and ReLU activation functions. The first layer uses a kernel size of 3×3
pixels performing a 1D convolution on the 3×21 data with a stride of 1 pixel. The flattened
output from the final layer is connected to a dense layer with 128 neurons, followed by another
dense layer with the number of neurons equal to the number of classes. The output layer
consists of the final connect layer with softmax activation. The softmax function takes a vector
of real-valued scores (often called logits) and transforms them into a probability distribution

44

over multiple classes. For the classification task with 4 classes, the output layer has 4 neurons,
each representing the probability of the input belonging to a particular class. To prevent
overfitting, dropout layers are incorporated after each fully connected layer.

To optimize the described architecture, three common hyperparameters in CNNs were
optimized to obtain even better results. These were the initial learning rate for the model
training, the kernel size used by the convolutional layers, and the dropout rate. The number of
convolutional layers was also tested alongside them, given that, according to manual testing, it
also affected the model results without changing the number of trainable parameters. Table 4.5
shows the values tested for each hyperparameter.

Table 4.5: Tested hyperparameter values (CNN model)

Initial Learning Rate 0.01, 0.001, 0.0001
Kernel Size 2, 3
Dropout Rate 0.0, 0.1, 0.2, 0.3, 0.4, 0.5
Number of Convolutional Layers 1, 2, 3

In order to choose the best combination of these hyperparameters, all combinations were
tested using 4-fold cross-validation, and the average result of each combination was obtained.
The combination in Table 4.6 resulted in the lowest average loss and an average accuracy of
94.20 %.

Table 4.6: Best hyperparameters (CNN model)

Initial Learning Rate 0.001
Kernel Size 3
Dropout Rate 0.5
Number of Convolutional Layers 2

The final model can be seen in Figure 4.8 and it has 156 644 trainable parameters. It
is made of two convolutional layers followed by three dense layers, with the third being the
output layer. Between the convolutional and the dense layers and between both dense layers,
there is also a dropout layer to help with overfitting.

In
pu

tL
ay

er

C
on

v1
D

R
eL

U

C
on

v1
D

R
eL

U

Fl
at

te
n

D
ro

po
ut

D
en

se
R

eL
U

D
ro

po
ut

D
en

se
R

eL
U

D
en

se
So

ftm
ax

Figure 4.8: CNN model architecture.

4.4.2 Performance Evaluation

The final CNN architecture was trained resulting in the learning curves in Figure 4.9 and
Figure 4.10. According to the figures, the best validation loss occurred around the 375th
epoch, with the training stopping 200 epochs later.

45

0 100 200 300 400 500
Epochs

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Lo

ss
Training Loss
Validation Loss

Figure 4.9: Training and validation loss evolution during the CNN’s training.

0 100 200 300 400 500
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

Training Accuracy
Validation Accuracy

Figure 4.10: Training and validation accuracy evolution during the CNN’s training.

After the model finished training, the metrics in the Table 4.7 were obtained. Given that
the test accuracy was over 92 %, it can be concluded that the model managed to generalize its
knowledge from the training data to classify data it has never seen before. Additionally, the
confusion matrix in Figure 4.11 shows that the screwdriver was the object the model managed
to predict more accurately. This can be because the hand geometry that allows a person to
intuitively grasp a screwdriver is more restricted.

Table 4.7: CNN metrics

Accuracy Precision Recall F1-Score
0.9240 0.9242 0.9240 0.9240

46

bottle cube phone screw.

bo
tt

le
cu

be
ph

on
e

sc
re

w
.

Tr
ue

La
be

l

0.90 0.03 0.05 0.02

0.04 0.91 0.03 0.02

0.03 0.02 0.93 0.02

0.01 0.02 0.02 0.95

Predicted Label

Figure 4.11: CNN confusion matrix.

4.5 Transformer Neural Network Classifier

As said in subsection 3.2.3, Transformer Neural Networks shine at capturing long-range
dependencies and relationships. Therefore, because the points obtained from Mediapipe have
a specific order, this ability can be used to process structured data and effectively capture
dependencies and patterns.

4.5.1 Model Selection

For this work, a Transformer architecture adapted from an example in the Keras docu-
mentation1 was tested and manually optimized. The resulting architecture can be seen in
Figure 4.13 and it has 16 384 trainable parameters. It is made of two Transformer encoder
stacks (Figure 4.12) comprised of the following layers: multi-head self-attention, layer normal-
ization, and feedforward neural networks. Within each encoder, multi-head self-attention is
applied to capture dependencies among the keypoints, where four attention heads are used for
enhanced feature extraction. Following self-attention, two position-wise feedforward neural
networks are employed to process the attended features and capture complex patterns. Layer
normalization is applied after each sub-layer to stabilize the activations and facilitate training
convergence.

To further optimize the previous architecture, three hyperparameters were optimized to
improve the performance of the model. These were the initial learning rate for the model
training, the dropout rate inside each transformer block, and the dropout rate of the MLP at
the end of the model. Table 4.8 shows the values tested for each hyperparameter.

Table 4.8: Tested hyperparameter values (Transformer model)

Initial Learning Rate 0.01, 0.001, 0.0001
Dropout Rate 0.0, 0.1, 0.2, 0.3, 0.4, 0.5
MLP Dropout Rate 0.0, 0.1, 0.2, 0.3, 0.4, 0.5

1Transformer Keras Example: https://keras.io/examples/timeseries/timeseries_transformer_clas
sification

47

https://keras.io/examples/timeseries/timeseries_transformer_classification
https://keras.io/examples/timeseries/timeseries_transformer_classification

in
pu

t

La
ye

rN
or

m
al

iz
at

io
n

M
ul

tiH
ea

dA
tt

en
tio

n

D
ro

po
ut

ad
d

La
ye

rN
or

m
al

iz
at

io
n

C
on

v1
D

R
eL

U

D
ro

po
ut

C
on

v1
D

ad
d

Figure 4.12: Transformer encoder block.

In
pu

tL
ay

er

Tr
an

sfo
rm

er
En

co
de

r

Tr
an

sfo
rm

er
En

co
de

r

Fl
at

te
n

D
en

se
R

eL
U

D
ro

po
ut

D
en

se
R

eL
U

D
ro

po
ut

D
en

se
So

ftm
ax

Figure 4.13: Transformer model architecture.

In order to choose the best combination of these hyperparameters, all combinations were
tested using 4-fold cross-validation, and the combination with the smallest average validation
loss was chosen. This combination can be seen in Table 4.9 having an average accuracy of
92.24 %.

Table 4.9: Best hyperparameters (Transformer model)

Learning Rate 0.0001
Dropout Rate 0.5
MLP Dropout Rate 0.1

4.5.2 Performance Evaluation

The final architecture was trained resulting in the learning curves in Figure 4.14 and
Figure 4.15. According to the figures, the best validation loss occurred around the 3500th
epoch, with the training stopping 200 epochs later.

With the model training phase finished, the metrics on Table 4.10 were obtained using
the test set. Considering that the accuracy surpassed 91 %, one can conclude that the model
successfully generalized the knowledge from the training data to classify previously unseen
data. Additionally, the results from the obtained confusion matrix (Figure 4.16) were similar
to the CNN with the screwdriver being the object predicted more accurately.

Table 4.10: Transformer metrics

Accuracy Precision Recall F1-Score
0.9109 0.9115 0.9109 0.9109

48

0 500 1000 1500 2000 2500 3000 3500
Epochs

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Lo

ss
Training Loss
Validation Loss

Figure 4.14: Training and validation loss evolution during the Transformer’s training.

0 500 1000 1500 2000 2500 3000 3500
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

Training Accuracy
Validation Accuracy

Figure 4.15: Training and validation accuracy evolution during the Transformer’s training.

bottle cube phone screw.

bo
tt

le
cu

be
ph

on
e

sc
re

w
.

Tr
ue

La
be

l

0.89 0.03 0.06 0.02

0.04 0.89 0.04 0.03

0.02 0.02 0.92 0.03

0.01 0.02 0.03 0.94

Predicted Label

Figure 4.16: Transformer confusion matrix.

49

4.6 Comparative Analysis of Deep Models Generalization Ability

This section provides a comparative analysis of the performance of a CNN model against
a transformer model for the recognition of the human-grasped object from the hand keypoints.
Three main experiments were designed to evaluate the classification performance of the two
architectures under comparison when they were fed with the same data. With the three
experiments, the intent was to study the generalization capacity of the deep model in unseen
data, taking into account the different users and the different data acquisition sessions.

4.6.1 Experiments and Metrics

In the context of this research on developing a hand-object recognition classifier utilizing
keypoints provided by the MediaPipe Hands Model, a series of experiments was conducted to
evaluate the classifier’s performance comprehensively, as follows:

• Experiment 1: Session-Based Test: the first experiment aims to assess the impact
of session-based testing on the classifier’s performance. For that purpose, the classifier
will be trained on data from all users and all acquisition sessions except one that will be
used for testing.

• Experiment 2: User-Specific Test: in the pursuit of refining the hand-object
recognition classifier, a second experiment with a focus on individual user data was
conducted. This experiment aims to provide insights into how the classifier performs
when trained and tested on data collected from a single user, with the process repeated
separately for each of the selected users.

• Experiment 3: Leave-One-User-Out Test:: the third experiment follows a distinc-
tive approach termed the "Leave-One-User-Out Test". This experiment is designed to
evaluate the classifier’s performance when trained on data from two users and tested on
data from the third user.

All experiments carried out take into account the intrinsic variability of performance
estimation by conducting 50 Monte-Carlo simulations. Metrics such as accuracy, precision,
recall, and F1-score were used to quantify the model’s effectiveness in recognizing the grasped
object. Also, confusion matrices help identify specific areas where the model may excel or
struggle in the classification task.

4.6.2 Session-Based Testing

In order to investigate the influence of session-based testing, the dataset was divided
into two configurations. In the first configuration, referred to as the "Full Dataset" scenario,
the entire dataset was employed consisting of 11 054 samples for both training and testing.
First, the dataset was randomly split into training (6632 samples), validation (2211 samples),
and testing (2211 samples) subsets. This setup aims to evaluate the classifier’s performance
when trained on a diverse set of hand-object interactions. Table 4.11 summarizes the results
of evaluating the performance of the two models in the "Full Dataset" scenario in terms of
accuracy, precision, recall, and F1-score. The CNN and Transformer show similar results
with robust scores around 92 % and 90 %, respectively. The confusion matrices in Figure 4.17

50

show that the classifiers excel in distinguishing between the different classes, maintaining high
accuracy. However, this outcome underscores the classifier’s ability to generalize across a
diverse range of hand-object interactions, as it was trained on a dataset encompassing multiple
users and multiple data acquisition sessions.

Table 4.11: "Full Dataset" performance metrics

Model Accuracy Precision Recall F1-Score
CNN 0.9210 0.9214 0.9211 0.9211
Transformer 0.9017 0.9020 0.9016 0.9017

bottle cube phone screw.

bo
tt

le
cu

be
ph

on
e

sc
re

w
.

Tr
ue

La
be

l

0.90 0.03 0.04 0.03

0.03 0.92 0.02 0.03

0.03 0.03 0.91 0.03

0.01 0.02 0.02 0.95

Predicted Label

(a)

bottle cube phone screw.

bo
tt

le
cu

be
ph

on
e

sc
re

w
.

Tr
ue

La
be

l

0.89 0.04 0.05 0.02

0.03 0.90 0.04 0.03

0.04 0.04 0.89 0.03

0.02 0.03 0.03 0.92

Predicted Label

(b)

Figure 4.17: "Full Dataset" confusion matrices: (a) CNN model, (b) Transformer model.

In the second configuration, one session was isolated from each user for testing (2731
samples), while the remaining sessions from all users were used for training (8289 samples).
The aim was to determine how the inclusion of session-specific data impacts the classifier
performance. The results depicted in Table 4.12 show the discrepancy in classifier accuracy
between the "Full Dataset" and the "Session-Based Testing" scenarios. Further, the confusion
matrix in Figure 4.18 compares the actual target with those predicted by the CNN model.
The classifier is making accurate and correct predictions for the majority of classes, while
struggling to recognize accurately examples belonging to specific classes, such as the "phone"
in the third data acquisition session (the same with the Transformer).

51

Table 4.12: "Session-Based Testing" performance metrics where data from each
session only appears in one set. For example, the "Session 1" column means that
data from that session of all users is used in testing, while the remaining sessions
are used for training.

Metric Model Session 1 Session 2 Session 3 Session 4

Accuracy CNN 0.8493 0.8138 0.7844 0.7718
Transformer 0.8458 0.8027 0.7902 0.7613

Precision CNN 0.8515 0.8160 0.8024 0.7723
Transformer 0.8469 0.8028 0.8045 0.7623

Recall CNN 0.8493 0.8138 0.7844 0.7718
Transformer 0.8458 0.8027 0.7902 0.7613

F1-Score CNN 0.8499 0.8136 0.7878 0.7717
Transformer 0.8461 0.8019 0.7932 0.7614

bottle cube phone screw.

bo
tt

le
cu

be
ph

on
e

sc
re

w
.

Tr
ue

La
be

l

0.83 0.06 0.08 0.03

0.08 0.82 0.05 0.05

0.10 0.06 0.79 0.05

0.01 0.03 0.02 0.94

Predicted Label

(a)

bottle cube phone screw.
bo

tt
le

cu
be

ph
on

e
sc

re
w

.
Tr

ue
La

be
l

0.72 0.09 0.16 0.03

0.08 0.83 0.08 0.01

0.06 0.07 0.83 0.04

0.04 0.04 0.05 0.87

Predicted Label

(b)

bottle cube phone screw.

bo
tt

le
cu

be
ph

on
e

sc
re

w
.

Tr
ue

La
be

l

0.71 0.19 0.05 0.05

0.06 0.88 0.03 0.03

0.16 0.10 0.64 0.10

0.02 0.03 0.03 0.92

Predicted Label

(c)

bottle cube phone screw.

bo
tt

le
cu

be
ph

on
e

sc
re

w
.

Tr
ue

La
be

l

0.77 0.11 0.10 0.02

0.07 0.76 0.08 0.09

0.09 0.08 0.75 0.08

0.08 0.09 0.03 0.80

Predicted Label

(d)

Figure 4.18: "Session-Based Testing" confusion matrices (CNN model): session 1 (a) to session 4 (d).

4.6.3 User-Specific Test

The experiment described in this subsection focuses on the variability in hand configurations
and keypoint patterns for the same user over time (i.e., under different conditions imposed by
the four data acquisition sessions carried out). Once again, two distinct dataset configurations
were constructed for each user. In the first configuration ("Full User Dataset"), the entire

52

dataset for a single user was used, with the process repeated separately for all others. This
simulates a scenario where the classifier is trained and tested on all available data for a
single user based on a random split using an 80-20 ratio. The performance of the CNN
and transformer models in the "Full User Dataset" scenario is summarized in Table 4.13.
The CNN presents slightly better results than the transformer in different metrics, while
User1’s performance stands out. The confusion matrices show that the classifiers excel in
distinguishing between the different classes with high accuracy (see Figure 4.19 relating to
the CNN model).

Table 4.13: "Full User Dataset" performance metrics.

Metric Model User1 User2 User3

Accuracy CNN 0.9674 0.9100 0.9163
Transformer 0.9423 0.8929 0.8730

Precision CNN 0.9678 0.9109 0.9171
Transformer 0.9435 0.8943 0.8745

Recall CNN 0.9674 0.9100 0.9163
Transformer 0.9423 0.8929 0.8730

F1-Score CNN 0.9675 0.9101 0.9164
Transformer 0.9423 0.8930 0.8729

bottle cube phone screw.

bo
tt

le
cu

be
ph

on
e

sc
re

w
.

Tr
ue

La
be

l

0.97 0.01 0.02 0.00

0.01 0.95 0.02 0.02

0.01 0.02 0.97 0.00

0.00 0.01 0.00 0.99

Predicted Label

(a)

bottle cube phone screw.

bo
tt

le
cu

be
ph

on
e

sc
re

w
.

Tr
ue

La
be

l

0.91 0.05 0.02 0.02

0.06 0.89 0.03 0.02

0.03 0.03 0.90 0.04

0.01 0.02 0.03 0.94

Predicted Label

(b)

bottle cube phone screw.

bo
tt

le
cu

be
ph

on
e

sc
re

w
.

Tr
ue

La
be

l

0.90 0.04 0.05 0.01

0.02 0.92 0.03 0.03

0.04 0.03 0.92 0.01

0.02 0.02 0.02 0.94

Predicted Label

(c)

Figure 4.19: "Full User Dataset" confusion matrices (CNN model): (a) User1, (b) User2, and (c)
User3.

In the second configuration, the data of one acquisition session for a specific user was
isolated, dedicating it exclusively to the testing phase. Meanwhile, the remaining sessions’
data from the same user were employed for training. This "Session-Based User Testing"
setup mirrors scenarios where a classifier must adapt to recognize objects manipulated by a
user based on a limited history of interactions. The results in Table 4.14, relating to User1,
reveal interesting insights into the classifier’s adaptability within the context of different user
behaviors across multiple sessions. First, varying levels in all metrics across sessions with a
range between 78.8 % and 92.6 % can be observed. The decrease in the evaluation metrics
between the "Full User Dataset" and "Session-Based User Testing" scenarios highlights the

53

importance of user-specific adaptation. The confusion matrices (see Figure 4.20) also reveal
lower performances in certain classes, but these vary from session to session. These results
emphasize the importance of considering session-specific variations and user behaviors when
training and evaluating the classifier.

Table 4.14: "Session-Based User1 Testing" performance metrics (each column
indicates the specific session used in testing the model).

Metric Model Session 1 Session 2 Session 3 Session 4

Accuracy CNN 0.9257 0.8364 0.9053 0.7883
Transformer 0.9078 0.8171 0.8742 0.7636

Precision CNN 0.9288 0.8543 0.9135 0.7971
Transformer 0.9112 0.8401 0.8806 0.7846

Recall CNN 0.9257 0.8364 0.9053 0.7884
Transformer 0.9078 0.8172 0.8742 0.7636

F1-Score CNN 0.9261 0.8382 0.9073 0.7892
Transformer 0.9083 0.8196 0.8759 0.7671

bottle cube phone screw.

bo
tt

le
cu

be
ph

on
e

sc
re

w
.

Tr
ue

La
be

l

0.97 0.01 0.01 0.01

0.06 0.85 0.05 0.04

0.05 0.01 0.94 0.00

0.00 0.06 0.00 0.94

Predicted Label

(a)

bottle cube phone screw.

bo
tt

le
cu

be
ph

on
e

sc
re

w
.

Tr
ue

La
be

l

0.84 0.00 0.16 0.00

0.00 0.96 0.03 0.01

0.02 0.11 0.87 0.00

0.19 0.08 0.04 0.69

Predicted Label

(b)

bottle cube phone screw.

bo
tt

le
cu

be
ph

on
e

sc
re

w
.

Tr
ue

La
be

l

0.92 0.00 0.08 0.00

0.01 0.98 0.00 0.01

0.11 0.08 0.76 0.05

0.00 0.02 0.00 0.98

Predicted Label

(c)

bottle cube phone screw.

bo
tt

le
cu

be
ph

on
e

sc
re

w
.

Tr
ue

La
be

l

0.88 0.00 0.09 0.03

0.01 0.60 0.08 0.31

0.05 0.10 0.83 0.02

0.00 0.14 0.01 0.85

Predicted Label

(d)

Figure 4.20: "Session-Based User1 Testing" confusion matrices (CNN model).

54

4.6.4 Leave-One-User-Out Test

The third experiment follows a distinctive approach termed the "Leave-One-User-Out
Test". This is particularly relevant in scenarios where the data is collected from multiple users
(i.e., dealing with user-dependent data), and the goal is to evaluate the model’s generalization
ability to new individuals who were not part of the training data. In this case, the process
involves training the model on data from all users except one (the user to be left out) and
then evaluating the model’s performance on the data from the left-out user. This experiment
allows the observation of a trend and it showcases the challenges of generalization to unseen
users. In order to identify the trend, the process is repeated for each user, training the model
on all users except the one being evaluated. This approach ensures that each user’s data
is used once as a test set (around 3660 samples), while the remaining data is employed for
training (around 7350 samples).

Table 4.15 and Figure 4.21 shows the results obtained considering that only one user’s data
(all sessions) is used in testing the model. Although the classifier recognizes to some extent
objects grasped by "User1" when it has not been explicitly trained on, the lower performance
for "User2" and "User3" indicates limitations in generalization to users with distinct grasping
patterns. The results indicate the difficulties the deep model faces when adapting to a new
user in the absence of a dedicated training period. This emphasizes the need for personalized
models or strategies that can adapt to individual user behaviors. In real-world scenarios,
users may exhibit diverse hand-object interaction patterns and models should be capable
of accommodating these variations. Whatever strategy is adopted, ensuring diverse and
representative data (e.g., a bigger dataset) will be crucial for improving the results, either
using a convolutional network as a transformer.

Table 4.15: "Leave-One-User-Out Test" performance metrics
where data from each user only appears in the test set. For
example, the "User1" column means that data from that user
is used in testing, while the data from the remaining users is
used for training."

Metric Model User1 User2 User3

Accuracy CNN 0.7969 0.5827 0.5488
Transformer 0.8006 0.5730 0.5350

Precision CNN 0.8123 0.5889 0.5675
Transformer 0.8094 0.5794 0.5492

Recall CNN 0.7969 0.5827 0.5488
Transformer 0.8006 0.5730 0.5350

F1-Score CNN 0.8008 0.5791 0.5483
Transformer 0.8028 0.5702 0.5321

55

bottle cube phone screw.
bo

tt
le

cu
be

ph
on

e
sc

re
w

.
Tr

ue
La

be
l

0.74 0.12 0.11 0.03

0.05 0.82 0.05 0.08

0.15 0.14 0.65 0.06

0.01 0.01 0.01 0.97

Predicted Label

(a)

bottle cube phone screw.

bo
tt

le
cu

be
ph

on
e

sc
re

w
.

Tr
ue

La
be

l

0.60 0.29 0.08 0.03

0.20 0.61 0.08 0.11

0.22 0.24 0.49 0.05

0.15 0.09 0.15 0.61

Predicted Label

(b)

bottle cube phone screw.

bo
tt

le
cu

be
ph

on
e

sc
re

w
.

Tr
ue

La
be

l

0.45 0.15 0.34 0.06

0.09 0.69 0.17 0.05

0.16 0.31 0.41 0.12

0.06 0.25 0.06 0.63

Predicted Label

(c)

Figure 4.21: "Leave-One-User-Out Test" confusion matrices (CNN model).

4.7 Human Intention Prediction in Shared Tasks

After detailing all the processes related to the models’ creation and validation, this
section will cover how they can be integrated into a real-time application. In the proposed
implementation, the MediaPipe Hands and Pose models have a corresponding ROS node that
communicates with the others using actions. This communication method ensures that the
models can run in parallel with each other and that the node that makes the requests does
not need to wait for the results of the first model to make a request to the second as would be
the case if services were used. Although communicating using publish/subscribe nodes would
also respect the previous requirements, using actions also has the advantage of guaranteeing
that the images analyzed by both models are the same. This process is managed by the Right
Hand Keypoints Detection node which sends the images to the MediaPipe nodes, associates
their outputs, and publishes only the right hand keypoints. The Points Normalization node is
responsible for applying the remaining preprocessing steps and then publishing the normalized
right-hand keypoints. Finally, the Model Prediction node contains a model trained in this
work and predicts the grasped object. Figure 4.22 shows the developed implementation in
ROS of data preprocessing and model prediction.

Camera
Image

Right Hand
Keypoints
Detection

Mediapipe
Hands Model

Mediapipe
Pose Model

Points
Normalization

Model
Prediction

Predicted
Object

Figure 4.22: ROS nodes in the object recognition pipeline.

56

In a real-time implementation, additional processing could be made. For example, given
that the system processes a continuous video stream, it can generate multiple predictions per
second, which can be combined to make a final decision. This approach could give priority to
the most frequent label to prevent a single incorrect prediction from negatively affecting the
robot’s actions. However, certain limitations would also need to be addressed. One example
is how to deal with frames where the user is not holding an object. To solve this, the system
could, for instance, have a threshold on the model’s output probabilities to know if the hand
is in fact holding an object. Another example is how to deal with occlusions given that the
object can occlude the hand enough that MediaPipe stops detecting it. This could be solved
using object recognition models that directly classify the object from the images or by adding
more cameras. The information about which object is being grasped can then be used to
make a decision. Although it was not implemented, a possible solution would be to add a new
rule to the rule-based controller described in subsection 3.3.2.

4.8 Final Remarks

The experiments carried out provide valuable insights into the classifier’s performance in
different testing scenarios, especially for real-world applications. The results of the "User-
Specific Test" show that the classifier’s performance is influenced by the variability in interaction
patterns across different sessions. This emphasizes the importance of considering session-
specific variations when training and evaluating the classifier in user-centric applications (e.g.,
single-operator workstations). The lower accuracy in certain sessions and classes suggests the
need for model refinements to deal with changes in data distribution between different work
sessions. Pre-training a model on a large and diverse dataset and then fine-tuning it using
data from a new session can be effective. Likewise, monitoring the model’s performance in
real-time and periodically retraining it with new and diverse data can help the model adapt
to changing conditions and variations in different work sessions.

In dynamic settings where multiple users may interact with objects differently across
multiple sessions, it is crucial for the classifier to adapt and maintain performance. The
declining trend observed in the "Session-Based Testing" scenario suggests that the classifier
may have difficulties in recognizing grasping patterns effectively when faced with new sessions
that deviate from those in training. Once again, these results highlight the importance of
considering session-specific variations when acquiring the dataset. From the perspective of
model development in practical applications, the findings of this experiment emphasize the
need for ongoing model refinements and adaptation strategies. Techniques such as session-
specific fine-tuning or the incorporation of session-related features may prove valuable in
enhancing the classifier’s performance in real-world, dynamic environments.

The findings from the "Leave-One-User-Out Test" highlight the importance of personalized
modeling approaches to account for user-specific patterns in the hand-object recognition
system. In order to enhance the classifier’s performance, it may be necessary to consider
user-specific fine-tuning that can help the model better capture the nuances of new users.
This personalized training can lead to better convergence and performance. This reflects the

57

importance of actively collecting data from new users in a systematic way to adapt the model.
In line with this, the implementation of a system that allows for continuous model updating
as new user data becomes available can be foreseen, i.e., the model can adapt and improve
over time.

In the previous tests, the training times for both architectures were recorded, which
are displayed in Table 4.16. The results consistently showed that the Transformer required
approximately ten times more training time compared to the CNN. This is due to the fact that
the CNN is a relatively simpler architecture even if the number of parameters is significantly
higher in the CNN (156 644 compared to 16 384). This information in relevant in a real-time
implementation where the training time can be a deciding factor.

Table 4.16: Average training times comparison

Test CNN Transformer
Full Dataset 126.85 s 1350.53 s
Session-Based 119.25 s 1323.65 s
Full User Dataset 41.73 s 625.90 s
Session-Based User1 42.96 s 517.36 s
Leave-One-User-Out 96.53 s 995.17 s

58

CHAPTER 5
Conclusion and Future Work

5.1 Discussion

This document studies the problem of anticipating human actions in collaborative envi-
ronments with the goal of developing an anticipatory robot controller for an assembly task.
Looking at previous work found in the literature, there is a clear predominance of perception
using RGB cameras with different ways of preprocessing the captured images, particularly
with libraries that can detect keypoints in an image such as skeleton joints which are very
important to detect human poses. Then, supervised learning techniques are used to predict
the action being made and associate that information with the following action.

The approach adopted in this work was to perform action anticipation by recognizing the
object being grasped by the user from the configuration of the user’s hand. To support it, an
infrastructure in ROS was developed connecting a collaborative robot and two cameras to a
robot controller. From the controllers tested, the rule-based provided the most flexibility by
allowing to easily switch the rules used, which associate the state of the environment to a
particular action.

The proposed DL-based framework for hand-object recognition relies on the MediaPipe
Hands model to predict the hand keypoints and a multi-class classifier that uses them to predict
the grasped object. The study focused on the classifier’s generalization ability, remarking on
the importance of an effective evaluation before the system is applied in real-world scenarios.
Throughout the experiments, variations in performance were observed, particularly in scenarios
involving session-based testing and user-specific adaptation. The main results emphasize the
importance of continuous model monitoring, retraining, and active data collection to enable
the classifier to generalize effectively across diverse user behaviors and grasping patterns.
Personalized modeling approaches and fine-tuning strategies may be useful to address the
challenges at hand. In this context, careful consideration of dataset dimensionality is essential
to optimize model performance and facilitate meaningful insights from the data. The findings
offer valuable insights into the factors influencing the performance of the classifier and the
implications for real-world applications.

59

5.2 Future Work

This study presents a proof-of-concept about how to perform action anticipation from
a different type of information and the associated limitations. This work sets the stage for
ongoing improvements with the ultimate goal of delivering effective solutions for a wide range
of applications. Moving forward, there are three main topics of research:

• More Data: test the current architectures with a bigger dataset which can have more
people from different sex and/or age groups, can have more objects, can be from different
keypoint detection frameworks, or can be from different camera angles.

• Adaptability Strategies: explore advanced techniques to further enhance the adapt-
ability and generalization capabilities of the hand-object recognition system, namely by
exploring data from human grasping databases like [95].

• Real-Time Integration: although not tested in a specific example, most of the
infrastructure needed to proceed to real-time integration was implemented. However, a
real-time application of this work could prove to be an interesting research topic when
dealing with the limitations of the system described in Section 4.7. In particular, using
the models in this work alongside an object recognition model that classifies directly
from images could provide a consistent object detection since they complement each
other.

5.3 Contributions

This work provided the following contributions:

• P. Amaral, F. Silva, V. Santos, «Recognition of Grasping Patterns using Deep Learning
for Human-Robot Colaboration», Sensors, [96].

• Pedro Amaral, Recognition of Human Grasping Patterns for Intention Prediction in
Collaborative Tasks, Github Repository, https://github.com/pedromiglou/MRSI_Th

esis_Action_Anticipation.
• Pedro Amaral, Human Grasping Patterns for Object Recognition, Kaggle Dataset,

https://www.kaggle.com/datasets/pedromiglou/human-grasping-patterns-for

-object-recognition.

60

https://github.com/pedromiglou/MRSI_Thesis_Action_Anticipation
https://github.com/pedromiglou/MRSI_Thesis_Action_Anticipation
https://www.kaggle.com/datasets/pedromiglou/human-grasping-patterns-for-object-recognition
https://www.kaggle.com/datasets/pedromiglou/human-grasping-patterns-for-object-recognition

References

[1] R. Rosen, Anticipatory Systems: Philosophical, Mathematical and Methodological Foundations. Elsevier,
1985, pp. 339–347, isbn: 9780080311586. doi: 10.1016/C2009-0-07769-1.

[2] A. Louie, «Robert rosen’s anticipatory systems», Foresight, vol. 12, R. Miller, Ed., pp. 18–29, 3 Jun.
2010, issn: 1463-6689. doi: 10.1108/14636681011049848. [Online]. Available: https://www.emerald.
com/insight/content/doi/10.1108/14636681011049848/full/html.

[3] R. Poli, «The many aspects of anticipation», Foresight, vol. 12, R. Miller, Ed., pp. 7–17, 3 Jun. 2010,
issn: 1463-6689. doi: 10.1108/14636681011049839. [Online]. Available: https://www.emerald.com/
insight/content/doi/10.1108/14636681011049839/full/html.

[4] S. Robla-Gómez, V. M. Becerra, J. R. Llata, E. González-Sarabia, C. Torre-Ferrero, and J. Pérez-Oria,
«Working together: A review on safe human-robot collaboration in industrial environments», IEEE
Access, vol. 5, pp. 26 754–26 773, 2017. doi: 10.1109/ACCESS.2017.2773127.

[5] V. Villani, F. Pini, F. Leali, and C. Secchi, «Survey on human–robot collaboration in industrial settings:
Safety, intuitive interfaces and applications», Mechatronics, vol. 55, pp. 248–266, Nov. 2018, issn:
09574158. doi: 10.1016/j.mechatronics.2018.02.009. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S0957415818300321.

[6] A. Ajoudani, A. M. Zanchettin, S. Ivaldi, A. Albu-Schäffer, K. Kosuge, and O. Khatib, «Progress and
prospects of the human-robot collaboration», Autonomous Robots, vol. 42, Jun. 2018. doi: 10.1007/
s10514-017-9677-2.

[7] E. Matheson, R. Minto, E. G. G. Zampieri, M. Faccio, and G. Rosati, «Human-robot collaboration in
manufacturing applications: A review», Robotics, vol. 8, p. 100, 2019.

[8] S. Kumar, C. Savur, and F. Sahin, Survey of Human-Robot Collaboration in Industrial Settings:
Awareness, Intelligence, and Compliance, 2021. doi: 10.1109/TSMC.2020.3041231.

[9] A. Castro, F. Silva, and V. Santos, «Trends of human-robot collaboration in industry contexts: Handover,
learning, and metrics», Sensors, vol. 21, p. 4113, 12 Jun. 2021, issn: 1424-8220. doi: 10.3390/s21124113.
[Online]. Available: https://www.mdpi.com/1424-8220/21/12/4113.

[10] G. Michalos, N. Kousi, P. Karagiannis, et al., «Seamless human robot collaborative assembly–an
automotive case study», Mechatronics, vol. 55, pp. 194–211, 2018.

[11] S. Papanastasiou, N. Kousi, P. Karagiannis, et al., «Towards seamless human robot collaboration:
Integrating multimodal interaction», The International Journal of Advanced Manufacturing Technology,
vol. 105, pp. 3881–3897, 2019.

[12] G. Hoffman, «Evaluating fluency in human–robot collaboration», IEEE Transactions on Human-Machine
Systems, vol. 49, no. 3, pp. 209–218, 2019. doi: 10.1109/THMS.2019.2904558.

[13] L. Rozo, H. Ben Amor, S. Calinon, A. Dragan, and D. Lee, «Special issue on learning for human–robot
collaboration», Autonomous Robots, vol. 42, Apr. 2018. doi: 10.1007/s10514-018-9756-z.

[14] J. Jiao, F. Zhou, N. Z. Gebraeel, and V. Duffy, «Towards augmenting cyber-physical-human collaborative
cognition for human-automation interaction in complex manufacturing and operational environments»,
International Journal of Production Research, vol. 58, no. 16, pp. 5089–5111, 2020.

61

https://doi.org/10.1016/C2009-0-07769-1
https://doi.org/10.1108/14636681011049848
https://www.emerald.com/insight/content/doi/10.1108/14636681011049848/full/html
https://www.emerald.com/insight/content/doi/10.1108/14636681011049848/full/html
https://doi.org/10.1108/14636681011049839
https://www.emerald.com/insight/content/doi/10.1108/14636681011049839/full/html
https://www.emerald.com/insight/content/doi/10.1108/14636681011049839/full/html
https://doi.org/10.1109/ACCESS.2017.2773127
https://doi.org/10.1016/j.mechatronics.2018.02.009
https://linkinghub.elsevier.com/retrieve/pii/S0957415818300321
https://linkinghub.elsevier.com/retrieve/pii/S0957415818300321
https://doi.org/10.1007/s10514-017-9677-2
https://doi.org/10.1007/s10514-017-9677-2
https://doi.org/10.1109/TSMC.2020.3041231
https://doi.org/10.3390/s21124113
https://www.mdpi.com/1424-8220/21/12/4113
https://doi.org/10.1109/THMS.2019.2904558
https://doi.org/10.1007/s10514-018-9756-z

[15] G. Hoffman and C. Breazeal, «Cost-based anticipatory action selection for human–robot fluency», IEEE
Transactions on Robotics, vol. 23, pp. 952–961, 5 Oct. 2007, issn: 1552-3098. doi: 10.1109/TRO.2007.
907483. [Online]. Available: https://ieeexplore.ieee.org/document/4339531/.

[16] A. M. Williams, «Perceiving the intentions of others: How do skilled performers make anticipation
judgments?», Progress in brain research, vol. 174, pp. 73–83, 2009.

[17] C.-M. Huang and B. Mutlu, «Anticipatory robot control for efficient human-robot collaboration»,
in 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), IEEE, Mar.
2016, pp. 83–90, isbn: 978-1-4673-8370-7. doi: 10.1109/HRI.2016.7451737. [Online]. Available: http:
//ieeexplore.ieee.org/document/7451737/.

[18] N. F. Duarte, M. Raković, J. Tasevski, M. I. Coco, A. Billard, and J. Santos-Victor, «Action anticipation:
Reading the intentions of humans and robots», IEEE Robotics and Automation Letters, vol. 3, no. 4,
pp. 4132–4139, 2018.

[19] C.-M. Huang, S. Andrist, A. Sauppé, and B. Mutlu, «Using gaze patterns to predict task intent in
collaboration», Frontiers in psychology, vol. 6, p. 1049, 2015.

[20] O. C. Görür, B. Rosman, F. Sivrikaya, and S. Albayrak, «Social cobots: Anticipatory decision-making for
collaborative robots incorporating unexpected human behaviors», in Proceedings of the 2018 ACM/IEEE
International Conference on Human-Robot Interaction, 2018, pp. 398–406.

[21] G. Gkioxari, R. Girshick, P. Dollár, and K. He, «Detecting and recognizing human-object interactions»,
in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 8359–8367.

[22] A. A. Malik, «Robots and covid-19: Challenges in integrating robots for collaborative automation»,
unpublished, Jun. 2020.

[23] WiredWorkers, Cobots, Last accessed 3 January 2023. [Online]. Available: https://wiredworkers.io/
cobot/.

[24] D. Mukherjee, K. Gupta, L. H. Chang, and H. Najjaran, «A survey of robot learning strategies for
human-robot collaboration in industrial settings», Robotics and Computer-Integrated Manufacturing,
vol. 73, p. 102 231, Feb. 2022, issn: 07365845. doi: 10.1016/j.rcim.2021.102231. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0736584521001137.

[25] F. Semeraro, A. Griffiths, and A. Cangelosi, «Human–robot collaboration and machine learning:
A systematic review of recent research», Robotics and Computer-Integrated Manufacturing, vol. 79,
p. 102 432, Feb. 2023, issn: 07365845. doi: 10.1016/j.rcim.2022.102432. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S0736584522001156.

[26] C. Deans, «Biological prescience: The role of anticipation in organismal processes», Frontiers in
Physiology, vol. 12, Dec. 2021, issn: 1664-042X. doi: 10.3389/fphys.2021.672457. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fphys.2021.672457/full.

[27] V. Braitenberg, Vehicles: Experiments in Synthetic Psychology. The MIT Press, Feb. 1986, isbn:
9780262521123.

[28] D. Carneiro, F. Silva, and P. Georgieva, «Robot anticipation learning system for ball catching», Robotics,
vol. 10, p. 113, 4 Oct. 2021, issn: 2218-6581. doi: 10.3390/robotics10040113. [Online]. Available:
https://www.mdpi.com/2218-6581/10/4/113.

[29] Z. Wang, A. Boularias, K. Mülling, B. Schölkopf, and J. Peters, «Anticipatory action selection for
human–robot table tennis», Artificial Intelligence, vol. 247, pp. 399–414, Jun. 2017, issn: 00043702. doi:
10.1016/j.artint.2014.11.007. [Online]. Available: https://linkinghub.elsevier.com/retrieve/
pii/S0004370214001398.

[30] N. Sebanz, H. Bekkering, and G. Knoblich, «Joint action: Bodies and minds moving together», Trends in
Cognitive Sciences, vol. 10, pp. 70–76, 2 Feb. 2006, issn: 13646613. doi: 10.1016/j.tics.2005.12.009.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1364661305003566.

[31] C. Canuto, P. Moreno, J. Samatelo, R. Vassallo, and J. Santos-Victor, «Action anticipation for col-
laborative environments: The impact of contextual information and uncertainty-based prediction»,

62

https://doi.org/10.1109/TRO.2007.907483
https://doi.org/10.1109/TRO.2007.907483
https://ieeexplore.ieee.org/document/4339531/
https://doi.org/10.1109/HRI.2016.7451737
http://ieeexplore.ieee.org/document/7451737/
http://ieeexplore.ieee.org/document/7451737/
https://wiredworkers.io/cobot/
https://wiredworkers.io/cobot/
https://doi.org/10.1016/j.rcim.2021.102231
https://linkinghub.elsevier.com/retrieve/pii/S0736584521001137
https://doi.org/10.1016/j.rcim.2022.102432
https://linkinghub.elsevier.com/retrieve/pii/S0736584522001156
https://linkinghub.elsevier.com/retrieve/pii/S0736584522001156
https://doi.org/10.3389/fphys.2021.672457
https://www.frontiersin.org/articles/10.3389/fphys.2021.672457/full
https://doi.org/10.3390/robotics10040113
https://www.mdpi.com/2218-6581/10/4/113
https://doi.org/10.1016/j.artint.2014.11.007
https://linkinghub.elsevier.com/retrieve/pii/S0004370214001398
https://linkinghub.elsevier.com/retrieve/pii/S0004370214001398
https://doi.org/10.1016/j.tics.2005.12.009
https://linkinghub.elsevier.com/retrieve/pii/S1364661305003566

Neurocomputing, vol. 444, pp. 301–318, Jul. 2021, issn: 09252312. doi: 10.1016/j.neucom.2020.07.135.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0925231220317719.

[32] H. Gammulle, S. Denman, S. Sridharan, and C. Fookes, «Predicting the future: A jointly learnt model
for action anticipation», in 2019 IEEE/CVF International Conference on Computer Vision (ICCV),
IEEE, Oct. 2019, pp. 5561–5570, isbn: 978-1-7281-4803-8. doi: 10.1109/ICCV.2019.00566. [Online].
Available: https://ieeexplore.ieee.org/document/9009844/.

[33] Y. Wu, L. Zhu, X. Wang, Y. Yang, and F. Wu, «Learning to anticipate egocentric actions by imagination»,
IEEE Transactions on Image Processing, vol. 30, pp. 1143–1152, 2021, issn: 1057-7149. doi: 10.1109/
TIP.2020.3040521. [Online]. Available: https://ieeexplore.ieee.org/document/9280353/.

[34] C. Rodriguez, B. Fernando, and H. Li, «Action anticipation by predicting future dynamic images»,
in Computer Vision – ECCV 2018 Workshops, Springer, 2019, pp. 89–105, isbn: 9783030110147. doi:
10.1007/978-3-030-11015-4_10. [Online]. Available: http://link.springer.com/10.1007/978-3-
030-11015-4_10.

[35] A. Furnari and G. M. Farinella, «Rolling-unrolling lstms for action anticipation from first-person video»,
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, pp. 4021–4036, 11 Nov. 2021,
issn: 0162-8828. doi: 10.1109/TPAMI.2020.2992889. [Online]. Available: https://ieeexplore.ieee.
org/document/9088213/.

[36] G. J. Maeda, A. Maloo, M. Ewerton, R. Lioutikov, and J. Peters, «Anticipative interaction primitives for
human-robot collaboration», in AAAI Fall Symposium - Technical Report, 2016, isbn: 9781577357759.

[37] D. Moutinho, L. F. Rocha, C. M. Costa, L. F. Teixeira, and G. Veiga, «Deep learning-based human action
recognition to leverage context awareness in collaborative assembly», Robotics and Computer-Integrated
Manufacturing, vol. 80, p. 102 449, Apr. 2023, issn: 07365845. doi: 10.1016/j.rcim.2022.102449.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0736584522001314.

[38] S. Tortora, S. Michieletto, F. Stival, and E. Menegatti, «Fast human motion prediction for human-robot
collaboration with wearable interface», in 2019 IEEE International Conference on Cybernetics and
Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM),
IEEE, Nov. 2019, pp. 457–462, isbn: 978-1-7281-3458-1. doi: 10.1109/CIS-RAM47153.2019.9095779.
[Online]. Available: https://ieeexplore.ieee.org/document/9095779/.

[39] P. Schydlo, M. Rakovic, L. Jamone, and J. Santos-Victor, «Anticipation in human-robot cooperation:
A recurrent neural network approach for multiple action sequences prediction», IEEE, May 2018,
pp. 1–6, isbn: 978-1-5386-3081-5. doi: 10 . 1109 / ICRA . 2018 . 8460924. [Online]. Available: https :
//ieeexplore.ieee.org/document/8460924/.

[40] W. Wang, X. Peng, Y. Su, Y. Qiao, and J. Cheng, «Ttpp: Temporal transformer with progressive
prediction for efficient action anticipation», Neurocomputing, vol. 438, pp. 270–279, May 2021, issn:
09252312. doi: 10.1016/j.neucom.2021.01.087. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/S0925231221001697.

[41] R. D. Geest, E. Gavves, A. Ghodrati, Z. Li, C. Snoek, and T. Tuytelaars, «Online action detection»,
unpublished, Apr. 2016. [Online]. Available: http://arxiv.org/abs/1604.06506.

[42] Z. Zhang, G. Peng, W. Wang, Y. Chen, Y. Jia, and S. Liu, «Prediction-based human-robot collaboration
in assembly tasks using a learning from demonstration model», Sensors, vol. 22, p. 4279, 11 Jun.
2022, issn: 1424-8220. doi: 10.3390/s22114279. [Online]. Available: https://www.mdpi.com/1424-
8220/22/11/4279.

[43] K. Kuutti et al., «Activity theory as a potential framework for human-computer interaction research»,
Context and consciousness: Activity theory and human-computer interaction, vol. 1744, pp. 9–22, 1996.

[44] G. Taubin and D. B. Cooper, «Object recognition based on moment (or algebraic) invariants», in
Geometric Invariance in Computer Vision. Cambridge, MA, USA: MIT Press, 1992, pp. 375–397, isbn:
0262132850.

[45] F. Mindru, T. Moons, and L. Van Gool, «Color-based moment invariants for viewpoint and illumination
independent recognition of planar color patterns», in International Conference on Advances in Pattern
Recognition, S. Singh, Ed., London: Springer London, 1999, pp. 113–122, isbn: 978-1-4471-0833-7. doi:
10.1007/978-1-4471-0833-7_12.

63

https://doi.org/10.1016/j.neucom.2020.07.135
https://linkinghub.elsevier.com/retrieve/pii/S0925231220317719
https://doi.org/10.1109/ICCV.2019.00566
https://ieeexplore.ieee.org/document/9009844/
https://doi.org/10.1109/TIP.2020.3040521
https://doi.org/10.1109/TIP.2020.3040521
https://ieeexplore.ieee.org/document/9280353/
https://doi.org/10.1007/978-3-030-11015-4_10
http://link.springer.com/10.1007/978-3-030-11015-4_10
http://link.springer.com/10.1007/978-3-030-11015-4_10
https://doi.org/10.1109/TPAMI.2020.2992889
https://ieeexplore.ieee.org/document/9088213/
https://ieeexplore.ieee.org/document/9088213/
https://doi.org/10.1016/j.rcim.2022.102449
https://linkinghub.elsevier.com/retrieve/pii/S0736584522001314
https://doi.org/10.1109/CIS-RAM47153.2019.9095779
https://ieeexplore.ieee.org/document/9095779/
https://doi.org/10.1109/ICRA.2018.8460924
https://ieeexplore.ieee.org/document/8460924/
https://ieeexplore.ieee.org/document/8460924/
https://doi.org/10.1016/j.neucom.2021.01.087
https://linkinghub.elsevier.com/retrieve/pii/S0925231221001697
https://linkinghub.elsevier.com/retrieve/pii/S0925231221001697
http://arxiv.org/abs/1604.06506
https://doi.org/10.3390/s22114279
https://www.mdpi.com/1424-8220/22/11/4279
https://www.mdpi.com/1424-8220/22/11/4279
https://doi.org/10.1007/978-1-4471-0833-7_12

[46] M. Sarfraz, «Object recognition using moments: Some experiments and observations», in Geometric
Modeling and Imaging–New Trends (GMAI’06), 2006, pp. 189–194. doi: 10.1109/GMAI.2006.39.

[47] X. Wu, D. Sahoo, and S. C. Hoi, «Recent advances in deep learning for object detection», Neurocomputing,
vol. 396, pp. 39–64, 2020, issn: 0925-2312. doi: https://doi.org/10.1016/j.neucom.2020.01.085.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231220301430.

[48] I. Barabanau, A. Artemov, E. Burnaev, and V. Murashkin, «Monocular 3d object detection via geometric
reasoning on keypoints», in Proceedings of the 15th International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020) - Volume 5: VISAPP,
INSTICC, SciTePress, 2020, pp. 652–659, isbn: 978-989-758-402-2. doi: 10.5220/0009102506520659.

[49] S. Ren, K. He, R. Girshick, and J. Sun, «Faster r-cnn: Towards real-time object detection with region
proposal networks», IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 39, no. 06,
pp. 1137–1149, Jun. 2017, issn: 1939-3539. doi: 10.1109/TPAMI.2016.2577031.

[50] F. Zhuang, Z. Qi, K. Duan, et al., «A comprehensive survey on transfer learning», Proceedings of the
IEEE, vol. 109, no. 1, pp. 43–76, 2021. doi: 10.1109/JPROC.2020.3004555.

[51] C. Zimmermann, T. Welschehold, C. Dornhege, W. Burgard, and T. Brox, «3d human pose estimation
in rgbd images for robotic task learning», in 2018 IEEE International Conference on Robotics and
Automation (ICRA), Brisbane, Australia: IEEE Press, 2018, pp. 1986–1992. doi: 10.1109/ICRA.2018.
8462833. [Online]. Available: https://doi.org/10.1109/ICRA.2018.8462833.

[52] D. Rato, M. Oliveira, V. Santos, M. Gomes, and A. Sappa, «A sensor-to-pattern calibration framework
for multi-modal industrial collaborative cells», Journal of Manufacturing Systems, vol. 64, pp. 497–507,
2022, issn: 0278-6125. doi: https://doi.org/10.1016/j.jmsy.2022.07.006. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0278612522001182.

[53] S. Qi, X. Ning, G. Yang, et al., «Review of multi-view 3d object recognition methods based on deep
learning», Displays, vol. 69, p. 102 053, 2021, issn: 0141-9382. doi: https://doi.org/10.1016/j.
displa.2021.102053. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0141938221000639.

[54] Y.-W. Chao, Y. Liu, X. Liu, H. Zeng, and J. Deng, «Learning to detect human-object interactions», in
2018 ieee winter conference on applications of computer vision (wacv), IEEE, 2018, pp. 381–389.

[55] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, «Openpose: Realtime multi-person 2d pose
estimation using part affinity fields», IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 43, pp. 172–186, 1 Jan. 2021, issn: 0162-8828. doi: 10.1109/TPAMI.2019.2929257. [Online].
Available: https://ieeexplore.ieee.org/document/8765346/.

[56] S. Liu, H. Jiang, J. Xu, S. Liu, and X. Wang, «Semi-supervised 3d hand-object poses estimation with
interactions in time», in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 14 687–14 697.

[57] S. Gupta and J. Malik, «Visual semantic role labeling», arXiv preprint arXiv:1505.04474, 2015.

[58] B. Zhuang, Q. Wu, C. Shen, I. Reid, and A. van den Hengel, «Hcvrd: A benchmark for large-scale
human-centered visual relationship detection», in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, 2018.

[59] H. S. Koppula and A. Saxena, «Anticipating human activities using object affordances for reactive
robotic response», IEEE transactions on pattern analysis and machine intelligence, vol. 38, no. 1,
pp. 14–29, 2015.

[60] B. Hayes and J. A. Shah, «Interpretable models for fast activity recognition and anomaly explanation
during collaborative robotics tasks», in 2017 IEEE International Conference on Robotics and Automation
(ICRA), IEEE, 2017, pp. 6586–6593.

[61] A. Furnari and G. M. Farinella, «What would you expect? anticipating egocentric actions with rolling-
unrolling lstms and modality attention», in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 6252–6261.

64

https://doi.org/10.1109/GMAI.2006.39
https://doi.org/https://doi.org/10.1016/j.neucom.2020.01.085
https://www.sciencedirect.com/science/article/pii/S0925231220301430
https://doi.org/10.5220/0009102506520659
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1109/ICRA.2018.8462833
https://doi.org/10.1109/ICRA.2018.8462833
https://doi.org/10.1109/ICRA.2018.8462833
https://doi.org/https://doi.org/10.1016/j.jmsy.2022.07.006
https://www.sciencedirect.com/science/article/pii/S0278612522001182
https://doi.org/https://doi.org/10.1016/j.displa.2021.102053
https://doi.org/https://doi.org/10.1016/j.displa.2021.102053
https://www.sciencedirect.com/science/article/pii/S0141938221000639
https://www.sciencedirect.com/science/article/pii/S0141938221000639
https://doi.org/10.1109/TPAMI.2019.2929257
https://ieeexplore.ieee.org/document/8765346/

[62] B. Xu, J. Li, Y. Wong, Q. Zhao, and M. S. Kankanhalli, «Interact as you intend: Intention-driven
human-object interaction detection», IEEE Transactions on Multimedia, vol. 22, no. 6, pp. 1423–1432,
2019.

[63] D. Roy and B. Fernando, «Action anticipation using pairwise human-object interactions and transform-
ers», IEEE Transactions on Image Processing, vol. 30, pp. 8116–8129, 2021.

[64] J. Fan, X. Fan, F. Tian, et al., «What is that in your hand? recognizing grasped objects via forearm
electromyography sensing», Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, vol. 2, no. 4, pp. 1–24, 2018.

[65] B. Paulson, D. Cummings, and T. Hammond, «Object interaction detection using hand posture cues in
an office setting», International journal of human-computer studies, vol. 69, no. 1-2, pp. 19–29, 2011.

[66] R.-D. Vatavu and I. A. Zaiţi, «Automatic recognition of object size and shape via user-dependent
measurements of the grasping hand», International Journal of Human-Computer Studies, vol. 71, no. 5,
pp. 590–607, 2013.

[67] T. Feix, J. Romero, H.-B. Schmiedmayer, A. M. Dollar, and D. Kragic, «The grasp taxonomy of human
grasp types», IEEE Transactions on human-machine systems, vol. 46, no. 1, pp. 66–77, 2015.

[68] C. L. MacKenzie and T. Iberall, The grasping hand. Elsevier, 1994.

[69] T. Feix, I. M. Bullock, and A. M. Dollar, «Analysis of human grasping behavior: Object characteristics
and grasp type», IEEE transactions on haptics, vol. 7, no. 3, pp. 311–323, 2014.

[70] S. Puhlmann, F. Heinemann, O. Brock, and M. Maertens, «A compact representation of human single-
object grasping», in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
IEEE, 2016, pp. 1954–1959.

[71] S. Betti, G. Zani, S. Guerra, U. Castiello, and L. Sartori, «Reach-to-grasp movements: A multimodal
techniques study», Frontiers in psychology, vol. 9, p. 990, 2018.

[72] I. Egmose and S. Køppe, «Shaping of reach-to-grasp kinematics by intentions: A meta-analysis», Journal
of Motor Behavior, vol. 50, no. 2, pp. 155–165, 2018.

[73] D. Valkov, P. Kockwelp, F. Daiber, and A. Krüger, «Reach prediction using finger motion dynamics»,
in Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, 2023,
pp. 1–8.

[74] M. Quigley, K. Conley, B. Gerkey, et al., «Ros: An open-source robot operating system», in ICRA
workshop on open source software, Kobe, Japan, vol. 3, 2009, p. 5.

[75] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, «Robot operating system 2:
Design, architecture, and uses in the wild», Science Robotics, vol. 7, no. 66, eabm6074, 2022. doi:
10.1126/scirobotics.abm6074. [Online]. Available: https://www.science.org/doi/abs/10.1126/
scirobotics.abm6074.

[76] Orbbec, Astra pro plus, Last accessed 30 March 2023. [Online]. Available: https://shop.orbbec3d.
com/Astra-Pro-Plus.

[77] U. Robots, The ur10e, Last accessed 9 May 2023. [Online]. Available: https://www.universal-
robots.com/products/ur10-robot/.

[78] U. Robots, Robotiq 2f-140, Last accessed 24 October 2023. [Online]. Available: https://www.universal-
robots.com/plus/products/robotiq/robotiq-2f-140/.

[79] WiredWorkers, Ur10e, Last accessed 9 May 2023. [Online]. Available: https://shop.wiredworkers.io/
en_GB/shop/universal-robots-ur10e-87.

[80] T. Simon, H. Joo, I. Matthews, and Y. Sheikh, «Hand keypoint detection in single images using multiview
bootstrapping», unpublished, Apr. 2017. [Online]. Available: http://arxiv.org/abs/1704.07809.

[81] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, «Openpose: Realtime multi-person 2d pose
estimation using part affinity fields», unpublished, Dec. 2018. [Online]. Available: http://arxiv.org/
abs/1812.08008.

65

https://doi.org/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://shop.orbbec3d.com/Astra-Pro-Plus
https://shop.orbbec3d.com/Astra-Pro-Plus
https://www.universal-robots.com/products/ur10-robot/
https://www.universal-robots.com/products/ur10-robot/
https://www.universal-robots.com/plus/products/robotiq/robotiq-2f-140/
https://www.universal-robots.com/plus/products/robotiq/robotiq-2f-140/
https://shop.wiredworkers.io/en_GB/shop/universal-robots-ur10e-87
https://shop.wiredworkers.io/en_GB/shop/universal-robots-ur10e-87
http://arxiv.org/abs/1704.07809
http://arxiv.org/abs/1812.08008
http://arxiv.org/abs/1812.08008

[82] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, «Convolutional pose machines», unpublished,
Jan. 2016. [Online]. Available: http://arxiv.org/abs/1602.00134.

[83] S. Kreiss, L. Bertoni, and A. Alahi, «Openpifpaf: Composite fields for semantic keypoint detection and
spatio-temporal association», unpublished, Mar. 2021. [Online]. Available: http://arxiv.org/abs/
2103.02440.

[84] S. Kreiss, L. Bertoni, and A. Alahi, «Pifpaf: Composite fields for human pose estimation», unpublished,
Mar. 2019. [Online]. Available: http://arxiv.org/abs/1903.06593.

[85] C. Lugaresi, J. Tang, H. Nash, et al., «Mediapipe: A framework for perceiving and processing reality»,
in Third workshop on computer vision for AR/VR at IEEE computer vision and pattern recognition
(CVPR), vol. 2019, 2019.

[86] F. Zhang, V. Bazarevsky, A. Vakunov, et al., «Mediapipe hands: On-device real-time hand tracking»,
arXiv preprint arXiv:2006.10214, 2020.

[87] Google, Mediapipe, Last accessed 13 October 2023, 2023. [Online]. Available: https://developers.
google.com/mediapipe.

[88] I. H. Sarker, «Machine learning: Algorithms, real-world applications and research directions», SN
Computer Science, vol. 2, p. 160, 3 May 2021, issn: 2662-995X. doi: 10.1007/s42979-021-00592-x.
[Online]. Available: https://link.springer.com/10.1007/s42979-021-00592-x.

[89] K. Fukushima, «Neocognitron: A hierarchical neural network capable of visual pattern recognition»,
Neural Networks, vol. 1, no. 2, pp. 119–130, 1988, issn: 0893-6080. doi: https://doi.org/10.1016/0893-
6080(88)90014- 7. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
0893608088900147.

[90] M. Z. Alom, T. M. Taha, C. Yakopcic, et al., «A state-of-the-art survey on deep learning theory and archi-
tectures», Electronics, vol. 8, p. 292, 3 Mar. 2019, issn: 2079-9292. doi: 10.3390/electronics8030292.
[Online]. Available: https://www.mdpi.com/2079-9292/8/3/292.

[91] A. Vaswani, N. Shazeer, N. Parmar, et al., «Attention is all you need», G. I., F. R., W. H., et al., Eds.,
Cited by: 31224; Conference name: 31st Annual Conference on Neural Information Processing Systems,
NIPS 2017; Conference date: 4 December 2017 through 9 December 2017; Conference code: 136033,
vol. 2017-December, Neural information processing systems foundation, 2017, pp. 5999–6009. [Online].
Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043317328&partnerID=40&
md5=3e5a5c2b862c8979ffea845bb707b3c3.

[92] A. Kapoor, A. Gulli, S. Pal, and F. Chollet, «Deep learning with tensorflow and keras - third edition»,
in 3rd ed. Packt Publishing, Oct. 2022, ch. 6.

[93] G. Amprimo, G. Masi, G. Pettiti, G. Olmo, L. Priano, and C. Ferraris, «Hand tracking for clinical
applications: Validation of the google mediapipe hand (gmh) and the depth-enhanced gmh-d frameworks»,
arXiv preprint arXiv:2308.01088, 2023.

[94] G. Amprimo, C. Ferraris, G. Masi, G. Pettiti, and L. Priano, «Gmh-d: Combining google mediapipe and
rgb-depth cameras for hand motor skills remote assessment», in 2022 IEEE International Conference
on Digital Health (ICDH), IEEE, 2022, pp. 132–141.

[95] A. Saudabayev, Z. Rysbek, R. Khassenova, and H. A. Varol, «Human grasping database for activities of
daily living with depth, color and kinematic data streams», Scientific data, vol. 5, no. 1, pp. 1–13, 2018.

[96] P. Amaral, F. Silva, and V. Santos, «Recognition of grasping patterns using deep learning for human-
robot collaboration», Sensors, vol. 23, no. 21, 2023, issn: 1424-8220. doi: 10.3390/s23218989. [Online].
Available: https://www.mdpi.com/1424-8220/23/21/8989.

66

http://arxiv.org/abs/1602.00134
http://arxiv.org/abs/2103.02440
http://arxiv.org/abs/2103.02440
http://arxiv.org/abs/1903.06593
https://developers.google.com/mediapipe
https://developers.google.com/mediapipe
https://doi.org/10.1007/s42979-021-00592-x
https://link.springer.com/10.1007/s42979-021-00592-x
https://doi.org/https://doi.org/10.1016/0893-6080(88)90014-7
https://doi.org/https://doi.org/10.1016/0893-6080(88)90014-7
https://www.sciencedirect.com/science/article/pii/0893608088900147
https://www.sciencedirect.com/science/article/pii/0893608088900147
https://doi.org/10.3390/electronics8030292
https://www.mdpi.com/2079-9292/8/3/292
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043317328&partnerID=40&md5=3e5a5c2b862c8979ffea845bb707b3c3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043317328&partnerID=40&md5=3e5a5c2b862c8979ffea845bb707b3c3
https://doi.org/10.3390/s23218989
https://www.mdpi.com/1424-8220/23/21/8989

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Background
	Motivation
	Objectives
	Document Structure

	State of the Art
	Collaborative Robotics
	Human-Robot Communication
	Safety

	Anticipation System
	Concepts
	Approaches

	Object Recognition
	Object Sensing
	Hand Sensing

	Human-Robot Collaboration System
	System Architecture
	Robot Operating System (ROS)
	Perception System
	Manipulator Arm Control
	Computational Systems

	Software Tools and Deep Architectures
	Keypoints Detection Frameworks
	Convolutional Neural Networks (CNNs)
	Transformer Neural Networks

	Integration of First Anticipation Experiments
	Assembly Task: Build a Striped Flag
	First Anticipation Experiments

	Final Remarks

	Learning-Based Recognition of Human-Grasped Objects
	Proposal Framework
	Approach
	Evaluation Metrics

	Data Representation
	MediaPipe Suitability Validation
	Dataset Acquisition
	Preprocessing
	Train-Validation-Test Split

	K-Means Clustering
	Convolutional Neural Network Classifier
	Model Selection
	Performance Evaluation

	Transformer Neural Network Classifier
	Model Selection
	Performance Evaluation

	Comparative Analysis of Deep Models Generalization Ability
	Experiments and Metrics
	Session-Based Testing
	User-Specific Test
	Leave-One-User-Out Test

	Human Intention Prediction in Shared Tasks
	Final Remarks

	Conclusion and Future Work
	Discussion
	Future Work
	Contributions

	References

